direct product, metabelian, soluble, monomial, A-group
Aliases: C6×F8, C24⋊C21, C23⋊C42, (C23×C6)⋊C7, (C22×C6)⋊2C14, SmallGroup(336,213)
Series: Derived ►Chief ►Lower central ►Upper central
C23 — C6×F8 |
Generators and relations for C6×F8
G = < a,b,c,d,e | a6=b2=c2=d2=e7=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=dc=cd, ece-1=b, ede-1=c >
(1 33 38 19 24 12)(2 34 39 20 25 13)(3 35 40 21 26 14)(4 29 41 15 27 8)(5 30 42 16 28 9)(6 31 36 17 22 10)(7 32 37 18 23 11)
(2 20)(4 15)(5 16)(6 17)(8 41)(9 42)(10 36)(13 39)(22 31)(25 34)(27 29)(28 30)
(3 21)(5 16)(6 17)(7 18)(9 42)(10 36)(11 37)(14 40)(22 31)(23 32)(26 35)(28 30)
(1 19)(4 15)(6 17)(7 18)(8 41)(10 36)(11 37)(12 38)(22 31)(23 32)(24 33)(27 29)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)
G:=sub<Sym(42)| (1,33,38,19,24,12)(2,34,39,20,25,13)(3,35,40,21,26,14)(4,29,41,15,27,8)(5,30,42,16,28,9)(6,31,36,17,22,10)(7,32,37,18,23,11), (2,20)(4,15)(5,16)(6,17)(8,41)(9,42)(10,36)(13,39)(22,31)(25,34)(27,29)(28,30), (3,21)(5,16)(6,17)(7,18)(9,42)(10,36)(11,37)(14,40)(22,31)(23,32)(26,35)(28,30), (1,19)(4,15)(6,17)(7,18)(8,41)(10,36)(11,37)(12,38)(22,31)(23,32)(24,33)(27,29), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)>;
G:=Group( (1,33,38,19,24,12)(2,34,39,20,25,13)(3,35,40,21,26,14)(4,29,41,15,27,8)(5,30,42,16,28,9)(6,31,36,17,22,10)(7,32,37,18,23,11), (2,20)(4,15)(5,16)(6,17)(8,41)(9,42)(10,36)(13,39)(22,31)(25,34)(27,29)(28,30), (3,21)(5,16)(6,17)(7,18)(9,42)(10,36)(11,37)(14,40)(22,31)(23,32)(26,35)(28,30), (1,19)(4,15)(6,17)(7,18)(8,41)(10,36)(11,37)(12,38)(22,31)(23,32)(24,33)(27,29), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42) );
G=PermutationGroup([[(1,33,38,19,24,12),(2,34,39,20,25,13),(3,35,40,21,26,14),(4,29,41,15,27,8),(5,30,42,16,28,9),(6,31,36,17,22,10),(7,32,37,18,23,11)], [(2,20),(4,15),(5,16),(6,17),(8,41),(9,42),(10,36),(13,39),(22,31),(25,34),(27,29),(28,30)], [(3,21),(5,16),(6,17),(7,18),(9,42),(10,36),(11,37),(14,40),(22,31),(23,32),(26,35),(28,30)], [(1,19),(4,15),(6,17),(7,18),(8,41),(10,36),(11,37),(12,38),(22,31),(23,32),(24,33),(27,29)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | 6C | 6D | 6E | 6F | 7A | ··· | 7F | 14A | ··· | 14F | 21A | ··· | 21L | 42A | ··· | 42L |
order | 1 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 7 | ··· | 7 | 14 | ··· | 14 | 21 | ··· | 21 | 42 | ··· | 42 |
size | 1 | 1 | 7 | 7 | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 | 8 | ··· | 8 | 8 | ··· | 8 | 8 | ··· | 8 | 8 | ··· | 8 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 7 | 7 | 7 | 7 |
type | + | + | + | + | ||||||||
image | C1 | C2 | C3 | C6 | C7 | C14 | C21 | C42 | F8 | C2×F8 | C3×F8 | C6×F8 |
kernel | C6×F8 | C3×F8 | C2×F8 | F8 | C23×C6 | C22×C6 | C24 | C23 | C6 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 6 | 6 | 12 | 12 | 1 | 1 | 2 | 2 |
Matrix representation of C6×F8 ►in GL7(𝔽43)
7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 42 | 0 | 0 | 0 | 0 |
21 | 0 | 0 | 42 | 0 | 0 | 0 |
41 | 0 | 0 | 0 | 42 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 42 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 42 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 42 | 0 | 0 | 0 | 0 |
21 | 0 | 0 | 42 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
35 | 0 | 0 | 0 | 0 | 42 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
42 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 42 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 42 | 0 | 0 | 0 | 0 |
22 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 42 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 1 | 0 |
32 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 41 | 0 | 0 | 0 | 0 | 0 |
0 | 39 | 1 | 0 | 0 | 0 | 0 |
0 | 27 | 0 | 1 | 0 | 0 | 0 |
0 | 22 | 0 | 0 | 1 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 1 | 0 |
0 | 8 | 0 | 0 | 0 | 0 | 1 |
0 | 32 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(7,GF(43))| [7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7],[1,0,16,21,41,0,11,0,1,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,42],[1,4,16,21,0,35,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1],[42,0,0,22,0,8,32,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,41,39,27,22,2,8,32,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;
C6×F8 in GAP, Magma, Sage, TeX
C_6\times F_8
% in TeX
G:=Group("C6xF8");
// GroupNames label
G:=SmallGroup(336,213);
// by ID
G=gap.SmallGroup(336,213);
# by ID
G:=PCGroup([6,-2,-3,-7,-2,2,2,351,856,1277]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=b^2=c^2=d^2=e^7=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=d*c=c*d,e*c*e^-1=b,e*d*e^-1=c>;
// generators/relations
Export