Copied to
clipboard

G = C6×F8order 336 = 24·3·7

Direct product of C6 and F8

direct product, metabelian, soluble, monomial, A-group

Aliases: C6×F8, C24⋊C21, C23⋊C42, (C23×C6)⋊C7, (C22×C6)⋊2C14, SmallGroup(336,213)

Series: Derived Chief Lower central Upper central

C1C23 — C6×F8
C1C23F8C3×F8 — C6×F8
C23 — C6×F8
C1C6

Generators and relations for C6×F8
 G = < a,b,c,d,e | a6=b2=c2=d2=e7=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=dc=cd, ece-1=b, ede-1=c >

7C2
7C2
8C7
7C22
7C22
7C22
7C22
7C22
7C6
7C6
8C14
8C21
7C23
7C23
7C2×C6
7C2×C6
7C2×C6
7C2×C6
7C2×C6
8C42
7C22×C6
7C22×C6

Smallest permutation representation of C6×F8
On 42 points
Generators in S42
(1 33 38 19 24 12)(2 34 39 20 25 13)(3 35 40 21 26 14)(4 29 41 15 27 8)(5 30 42 16 28 9)(6 31 36 17 22 10)(7 32 37 18 23 11)
(2 20)(4 15)(5 16)(6 17)(8 41)(9 42)(10 36)(13 39)(22 31)(25 34)(27 29)(28 30)
(3 21)(5 16)(6 17)(7 18)(9 42)(10 36)(11 37)(14 40)(22 31)(23 32)(26 35)(28 30)
(1 19)(4 15)(6 17)(7 18)(8 41)(10 36)(11 37)(12 38)(22 31)(23 32)(24 33)(27 29)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)

G:=sub<Sym(42)| (1,33,38,19,24,12)(2,34,39,20,25,13)(3,35,40,21,26,14)(4,29,41,15,27,8)(5,30,42,16,28,9)(6,31,36,17,22,10)(7,32,37,18,23,11), (2,20)(4,15)(5,16)(6,17)(8,41)(9,42)(10,36)(13,39)(22,31)(25,34)(27,29)(28,30), (3,21)(5,16)(6,17)(7,18)(9,42)(10,36)(11,37)(14,40)(22,31)(23,32)(26,35)(28,30), (1,19)(4,15)(6,17)(7,18)(8,41)(10,36)(11,37)(12,38)(22,31)(23,32)(24,33)(27,29), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)>;

G:=Group( (1,33,38,19,24,12)(2,34,39,20,25,13)(3,35,40,21,26,14)(4,29,41,15,27,8)(5,30,42,16,28,9)(6,31,36,17,22,10)(7,32,37,18,23,11), (2,20)(4,15)(5,16)(6,17)(8,41)(9,42)(10,36)(13,39)(22,31)(25,34)(27,29)(28,30), (3,21)(5,16)(6,17)(7,18)(9,42)(10,36)(11,37)(14,40)(22,31)(23,32)(26,35)(28,30), (1,19)(4,15)(6,17)(7,18)(8,41)(10,36)(11,37)(12,38)(22,31)(23,32)(24,33)(27,29), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42) );

G=PermutationGroup([[(1,33,38,19,24,12),(2,34,39,20,25,13),(3,35,40,21,26,14),(4,29,41,15,27,8),(5,30,42,16,28,9),(6,31,36,17,22,10),(7,32,37,18,23,11)], [(2,20),(4,15),(5,16),(6,17),(8,41),(9,42),(10,36),(13,39),(22,31),(25,34),(27,29),(28,30)], [(3,21),(5,16),(6,17),(7,18),(9,42),(10,36),(11,37),(14,40),(22,31),(23,32),(26,35),(28,30)], [(1,19),(4,15),(6,17),(7,18),(8,41),(10,36),(11,37),(12,38),(22,31),(23,32),(24,33),(27,29)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42)]])

48 conjugacy classes

class 1 2A2B2C3A3B6A6B6C6D6E6F7A···7F14A···14F21A···21L42A···42L
order1222336666667···714···1421···2142···42
size1177111177778···88···88···88···8

48 irreducible representations

dim111111117777
type++++
imageC1C2C3C6C7C14C21C42F8C2×F8C3×F8C6×F8
kernelC6×F8C3×F8C2×F8F8C23×C6C22×C6C24C23C6C3C2C1
# reps11226612121122

Matrix representation of C6×F8 in GL7(𝔽43)

7000000
0700000
0070000
0007000
0000700
0000070
0000007
,
1000000
0100000
160420000
210042000
410004200
0000010
110000042
,
1000000
44200000
160420000
210042000
0000100
350000420
0000001
,
42000000
04200000
00420000
22001000
00004200
8000010
32000001
,
44100000
03910000
02701000
02200100
0200010
0800001
03200000

G:=sub<GL(7,GF(43))| [7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7,0,0,0,0,0,0,0,7],[1,0,16,21,41,0,11,0,1,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,42],[1,4,16,21,0,35,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1],[42,0,0,22,0,8,32,0,42,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,41,39,27,22,2,8,32,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0] >;

C6×F8 in GAP, Magma, Sage, TeX

C_6\times F_8
% in TeX

G:=Group("C6xF8");
// GroupNames label

G:=SmallGroup(336,213);
// by ID

G=gap.SmallGroup(336,213);
# by ID

G:=PCGroup([6,-2,-3,-7,-2,2,2,351,856,1277]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^2=c^2=d^2=e^7=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=d*c=c*d,e*c*e^-1=b,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of C6×F8 in TeX

׿
×
𝔽