Copied to
clipboard

G = C7×C4.A4order 336 = 24·3·7

Direct product of C7 and C4.A4

direct product, non-abelian, soluble

Aliases: C7×C4.A4, Q8.C42, C28.2A4, SL2(𝔽3)⋊2C14, C4○D4⋊C21, C4.(C7×A4), C2.3(A4×C14), (C7×Q8).5C6, C14.12(C2×A4), (C7×SL2(𝔽3))⋊5C2, (C7×C4○D4)⋊1C3, SmallGroup(336,170)

Series: Derived Chief Lower central Upper central

C1C2Q8 — C7×C4.A4
C1C2Q8C7×Q8C7×SL2(𝔽3) — C7×C4.A4
Q8 — C7×C4.A4
C1C28

Generators and relations for C7×C4.A4
 G = < a,b,c,d,e | a7=b4=e3=1, c2=d2=b2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=b2c, ece-1=b2cd, ede-1=c >

6C2
4C3
3C4
3C22
4C6
6C14
4C21
3D4
3C2×C4
4C12
3C2×C14
3C28
4C42
3C2×C28
3C7×D4
4C84

Smallest permutation representation of C7×C4.A4
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 39 78 32)(2 40 79 33)(3 41 80 34)(4 42 81 35)(5 36 82 29)(6 37 83 30)(7 38 84 31)(8 71 25 64)(9 72 26 65)(10 73 27 66)(11 74 28 67)(12 75 22 68)(13 76 23 69)(14 77 24 70)(15 62 109 53)(16 63 110 54)(17 57 111 55)(18 58 112 56)(19 59 106 50)(20 60 107 51)(21 61 108 52)(43 89 99 97)(44 90 100 98)(45 91 101 92)(46 85 102 93)(47 86 103 94)(48 87 104 95)(49 88 105 96)
(1 87 78 95)(2 88 79 96)(3 89 80 97)(4 90 81 98)(5 91 82 92)(6 85 83 93)(7 86 84 94)(8 109 25 15)(9 110 26 16)(10 111 27 17)(11 112 28 18)(12 106 22 19)(13 107 23 20)(14 108 24 21)(29 45 36 101)(30 46 37 102)(31 47 38 103)(32 48 39 104)(33 49 40 105)(34 43 41 99)(35 44 42 100)(50 68 59 75)(51 69 60 76)(52 70 61 77)(53 64 62 71)(54 65 63 72)(55 66 57 73)(56 67 58 74)
(1 75 78 68)(2 76 79 69)(3 77 80 70)(4 71 81 64)(5 72 82 65)(6 73 83 66)(7 74 84 67)(8 42 25 35)(9 36 26 29)(10 37 27 30)(11 38 28 31)(12 39 22 32)(13 40 23 33)(14 41 24 34)(15 100 109 44)(16 101 110 45)(17 102 111 46)(18 103 112 47)(19 104 106 48)(20 105 107 49)(21 99 108 43)(50 87 59 95)(51 88 60 96)(52 89 61 97)(53 90 62 98)(54 91 63 92)(55 85 57 93)(56 86 58 94)
(8 109 44)(9 110 45)(10 111 46)(11 112 47)(12 106 48)(13 107 49)(14 108 43)(15 100 25)(16 101 26)(17 102 27)(18 103 28)(19 104 22)(20 105 23)(21 99 24)(50 87 75)(51 88 76)(52 89 77)(53 90 71)(54 91 72)(55 85 73)(56 86 74)(57 93 66)(58 94 67)(59 95 68)(60 96 69)(61 97 70)(62 98 64)(63 92 65)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,39,78,32)(2,40,79,33)(3,41,80,34)(4,42,81,35)(5,36,82,29)(6,37,83,30)(7,38,84,31)(8,71,25,64)(9,72,26,65)(10,73,27,66)(11,74,28,67)(12,75,22,68)(13,76,23,69)(14,77,24,70)(15,62,109,53)(16,63,110,54)(17,57,111,55)(18,58,112,56)(19,59,106,50)(20,60,107,51)(21,61,108,52)(43,89,99,97)(44,90,100,98)(45,91,101,92)(46,85,102,93)(47,86,103,94)(48,87,104,95)(49,88,105,96), (1,87,78,95)(2,88,79,96)(3,89,80,97)(4,90,81,98)(5,91,82,92)(6,85,83,93)(7,86,84,94)(8,109,25,15)(9,110,26,16)(10,111,27,17)(11,112,28,18)(12,106,22,19)(13,107,23,20)(14,108,24,21)(29,45,36,101)(30,46,37,102)(31,47,38,103)(32,48,39,104)(33,49,40,105)(34,43,41,99)(35,44,42,100)(50,68,59,75)(51,69,60,76)(52,70,61,77)(53,64,62,71)(54,65,63,72)(55,66,57,73)(56,67,58,74), (1,75,78,68)(2,76,79,69)(3,77,80,70)(4,71,81,64)(5,72,82,65)(6,73,83,66)(7,74,84,67)(8,42,25,35)(9,36,26,29)(10,37,27,30)(11,38,28,31)(12,39,22,32)(13,40,23,33)(14,41,24,34)(15,100,109,44)(16,101,110,45)(17,102,111,46)(18,103,112,47)(19,104,106,48)(20,105,107,49)(21,99,108,43)(50,87,59,95)(51,88,60,96)(52,89,61,97)(53,90,62,98)(54,91,63,92)(55,85,57,93)(56,86,58,94), (8,109,44)(9,110,45)(10,111,46)(11,112,47)(12,106,48)(13,107,49)(14,108,43)(15,100,25)(16,101,26)(17,102,27)(18,103,28)(19,104,22)(20,105,23)(21,99,24)(50,87,75)(51,88,76)(52,89,77)(53,90,71)(54,91,72)(55,85,73)(56,86,74)(57,93,66)(58,94,67)(59,95,68)(60,96,69)(61,97,70)(62,98,64)(63,92,65)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,39,78,32)(2,40,79,33)(3,41,80,34)(4,42,81,35)(5,36,82,29)(6,37,83,30)(7,38,84,31)(8,71,25,64)(9,72,26,65)(10,73,27,66)(11,74,28,67)(12,75,22,68)(13,76,23,69)(14,77,24,70)(15,62,109,53)(16,63,110,54)(17,57,111,55)(18,58,112,56)(19,59,106,50)(20,60,107,51)(21,61,108,52)(43,89,99,97)(44,90,100,98)(45,91,101,92)(46,85,102,93)(47,86,103,94)(48,87,104,95)(49,88,105,96), (1,87,78,95)(2,88,79,96)(3,89,80,97)(4,90,81,98)(5,91,82,92)(6,85,83,93)(7,86,84,94)(8,109,25,15)(9,110,26,16)(10,111,27,17)(11,112,28,18)(12,106,22,19)(13,107,23,20)(14,108,24,21)(29,45,36,101)(30,46,37,102)(31,47,38,103)(32,48,39,104)(33,49,40,105)(34,43,41,99)(35,44,42,100)(50,68,59,75)(51,69,60,76)(52,70,61,77)(53,64,62,71)(54,65,63,72)(55,66,57,73)(56,67,58,74), (1,75,78,68)(2,76,79,69)(3,77,80,70)(4,71,81,64)(5,72,82,65)(6,73,83,66)(7,74,84,67)(8,42,25,35)(9,36,26,29)(10,37,27,30)(11,38,28,31)(12,39,22,32)(13,40,23,33)(14,41,24,34)(15,100,109,44)(16,101,110,45)(17,102,111,46)(18,103,112,47)(19,104,106,48)(20,105,107,49)(21,99,108,43)(50,87,59,95)(51,88,60,96)(52,89,61,97)(53,90,62,98)(54,91,63,92)(55,85,57,93)(56,86,58,94), (8,109,44)(9,110,45)(10,111,46)(11,112,47)(12,106,48)(13,107,49)(14,108,43)(15,100,25)(16,101,26)(17,102,27)(18,103,28)(19,104,22)(20,105,23)(21,99,24)(50,87,75)(51,88,76)(52,89,77)(53,90,71)(54,91,72)(55,85,73)(56,86,74)(57,93,66)(58,94,67)(59,95,68)(60,96,69)(61,97,70)(62,98,64)(63,92,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,39,78,32),(2,40,79,33),(3,41,80,34),(4,42,81,35),(5,36,82,29),(6,37,83,30),(7,38,84,31),(8,71,25,64),(9,72,26,65),(10,73,27,66),(11,74,28,67),(12,75,22,68),(13,76,23,69),(14,77,24,70),(15,62,109,53),(16,63,110,54),(17,57,111,55),(18,58,112,56),(19,59,106,50),(20,60,107,51),(21,61,108,52),(43,89,99,97),(44,90,100,98),(45,91,101,92),(46,85,102,93),(47,86,103,94),(48,87,104,95),(49,88,105,96)], [(1,87,78,95),(2,88,79,96),(3,89,80,97),(4,90,81,98),(5,91,82,92),(6,85,83,93),(7,86,84,94),(8,109,25,15),(9,110,26,16),(10,111,27,17),(11,112,28,18),(12,106,22,19),(13,107,23,20),(14,108,24,21),(29,45,36,101),(30,46,37,102),(31,47,38,103),(32,48,39,104),(33,49,40,105),(34,43,41,99),(35,44,42,100),(50,68,59,75),(51,69,60,76),(52,70,61,77),(53,64,62,71),(54,65,63,72),(55,66,57,73),(56,67,58,74)], [(1,75,78,68),(2,76,79,69),(3,77,80,70),(4,71,81,64),(5,72,82,65),(6,73,83,66),(7,74,84,67),(8,42,25,35),(9,36,26,29),(10,37,27,30),(11,38,28,31),(12,39,22,32),(13,40,23,33),(14,41,24,34),(15,100,109,44),(16,101,110,45),(17,102,111,46),(18,103,112,47),(19,104,106,48),(20,105,107,49),(21,99,108,43),(50,87,59,95),(51,88,60,96),(52,89,61,97),(53,90,62,98),(54,91,63,92),(55,85,57,93),(56,86,58,94)], [(8,109,44),(9,110,45),(10,111,46),(11,112,47),(12,106,48),(13,107,49),(14,108,43),(15,100,25),(16,101,26),(17,102,27),(18,103,28),(19,104,22),(20,105,23),(21,99,24),(50,87,75),(51,88,76),(52,89,77),(53,90,71),(54,91,72),(55,85,73),(56,86,74),(57,93,66),(58,94,67),(59,95,68),(60,96,69),(61,97,70),(62,98,64),(63,92,65)]])

98 conjugacy classes

class 1 2A2B3A3B4A4B4C6A6B7A···7F12A12B12C12D14A···14F14G···14L21A···21L28A···28L28M···28R42A···42L84A···84X
order12233444667···71212121214···1414···1421···2128···2828···2842···4284···84
size11644116441···144441···16···64···41···16···64···44···4

98 irreducible representations

dim11111111223333
type++++
imageC1C2C3C6C7C14C21C42C4.A4C7×C4.A4A4C2×A4C7×A4A4×C14
kernelC7×C4.A4C7×SL2(𝔽3)C7×C4○D4C7×Q8C4.A4SL2(𝔽3)C4○D4Q8C7C1C28C14C4C2
# reps11226612126361166

Matrix representation of C7×C4.A4 in GL2(𝔽29) generated by

200
020
,
120
012
,
170
1612
,
1218
017
,
2812
120
G:=sub<GL(2,GF(29))| [20,0,0,20],[12,0,0,12],[17,16,0,12],[12,0,18,17],[28,12,12,0] >;

C7×C4.A4 in GAP, Magma, Sage, TeX

C_7\times C_4.A_4
% in TeX

G:=Group("C7xC4.A4");
// GroupNames label

G:=SmallGroup(336,170);
// by ID

G=gap.SmallGroup(336,170);
# by ID

G:=PCGroup([6,-2,-3,-7,-2,2,-2,1008,1017,117,1900,202,88]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^4=e^3=1,c^2=d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=b^2*c,e*c*e^-1=b^2*c*d,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of C7×C4.A4 in TeX

׿
×
𝔽