metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: D164, C4⋊D41, C41⋊1D4, C164⋊1C2, D82⋊1C2, C2.4D82, C82.3C22, sometimes denoted D328 or Dih164 or Dih328, SmallGroup(328,6)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D164
G = < a,b | a164=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164)
(1 164)(2 163)(3 162)(4 161)(5 160)(6 159)(7 158)(8 157)(9 156)(10 155)(11 154)(12 153)(13 152)(14 151)(15 150)(16 149)(17 148)(18 147)(19 146)(20 145)(21 144)(22 143)(23 142)(24 141)(25 140)(26 139)(27 138)(28 137)(29 136)(30 135)(31 134)(32 133)(33 132)(34 131)(35 130)(36 129)(37 128)(38 127)(39 126)(40 125)(41 124)(42 123)(43 122)(44 121)(45 120)(46 119)(47 118)(48 117)(49 116)(50 115)(51 114)(52 113)(53 112)(54 111)(55 110)(56 109)(57 108)(58 107)(59 106)(60 105)(61 104)(62 103)(63 102)(64 101)(65 100)(66 99)(67 98)(68 97)(69 96)(70 95)(71 94)(72 93)(73 92)(74 91)(75 90)(76 89)(77 88)(78 87)(79 86)(80 85)(81 84)(82 83)
G:=sub<Sym(164)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164), (1,164)(2,163)(3,162)(4,161)(5,160)(6,159)(7,158)(8,157)(9,156)(10,155)(11,154)(12,153)(13,152)(14,151)(15,150)(16,149)(17,148)(18,147)(19,146)(20,145)(21,144)(22,143)(23,142)(24,141)(25,140)(26,139)(27,138)(28,137)(29,136)(30,135)(31,134)(32,133)(33,132)(34,131)(35,130)(36,129)(37,128)(38,127)(39,126)(40,125)(41,124)(42,123)(43,122)(44,121)(45,120)(46,119)(47,118)(48,117)(49,116)(50,115)(51,114)(52,113)(53,112)(54,111)(55,110)(56,109)(57,108)(58,107)(59,106)(60,105)(61,104)(62,103)(63,102)(64,101)(65,100)(66,99)(67,98)(68,97)(69,96)(70,95)(71,94)(72,93)(73,92)(74,91)(75,90)(76,89)(77,88)(78,87)(79,86)(80,85)(81,84)(82,83)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164), (1,164)(2,163)(3,162)(4,161)(5,160)(6,159)(7,158)(8,157)(9,156)(10,155)(11,154)(12,153)(13,152)(14,151)(15,150)(16,149)(17,148)(18,147)(19,146)(20,145)(21,144)(22,143)(23,142)(24,141)(25,140)(26,139)(27,138)(28,137)(29,136)(30,135)(31,134)(32,133)(33,132)(34,131)(35,130)(36,129)(37,128)(38,127)(39,126)(40,125)(41,124)(42,123)(43,122)(44,121)(45,120)(46,119)(47,118)(48,117)(49,116)(50,115)(51,114)(52,113)(53,112)(54,111)(55,110)(56,109)(57,108)(58,107)(59,106)(60,105)(61,104)(62,103)(63,102)(64,101)(65,100)(66,99)(67,98)(68,97)(69,96)(70,95)(71,94)(72,93)(73,92)(74,91)(75,90)(76,89)(77,88)(78,87)(79,86)(80,85)(81,84)(82,83) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164)], [(1,164),(2,163),(3,162),(4,161),(5,160),(6,159),(7,158),(8,157),(9,156),(10,155),(11,154),(12,153),(13,152),(14,151),(15,150),(16,149),(17,148),(18,147),(19,146),(20,145),(21,144),(22,143),(23,142),(24,141),(25,140),(26,139),(27,138),(28,137),(29,136),(30,135),(31,134),(32,133),(33,132),(34,131),(35,130),(36,129),(37,128),(38,127),(39,126),(40,125),(41,124),(42,123),(43,122),(44,121),(45,120),(46,119),(47,118),(48,117),(49,116),(50,115),(51,114),(52,113),(53,112),(54,111),(55,110),(56,109),(57,108),(58,107),(59,106),(60,105),(61,104),(62,103),(63,102),(64,101),(65,100),(66,99),(67,98),(68,97),(69,96),(70,95),(71,94),(72,93),(73,92),(74,91),(75,90),(76,89),(77,88),(78,87),(79,86),(80,85),(81,84),(82,83)]])
85 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 41A | ··· | 41T | 82A | ··· | 82T | 164A | ··· | 164AN |
order | 1 | 2 | 2 | 2 | 4 | 41 | ··· | 41 | 82 | ··· | 82 | 164 | ··· | 164 |
size | 1 | 1 | 82 | 82 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
85 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | D4 | D41 | D82 | D164 |
kernel | D164 | C164 | D82 | C41 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 20 | 20 | 40 |
Matrix representation of D164 ►in GL2(𝔽821) generated by
674 | 700 |
649 | 685 |
353 | 512 |
475 | 468 |
G:=sub<GL(2,GF(821))| [674,649,700,685],[353,475,512,468] >;
D164 in GAP, Magma, Sage, TeX
D_{164}
% in TeX
G:=Group("D164");
// GroupNames label
G:=SmallGroup(328,6);
// by ID
G=gap.SmallGroup(328,6);
# by ID
G:=PCGroup([4,-2,-2,-2,-41,49,21,5123]);
// Polycyclic
G:=Group<a,b|a^164=b^2=1,b*a*b=a^-1>;
// generators/relations
Export