direct product, metabelian, soluble, monomial, A-group
Aliases: A4×D7, C7⋊3(C2×A4), C22⋊(C3×D7), (C7×A4)⋊2C2, (C2×C14)⋊1C6, (C22×D7)⋊1C3, SmallGroup(168,48)
Series: Derived ►Chief ►Lower central ►Upper central
C2×C14 — A4×D7 |
Generators and relations for A4×D7
G = < a,b,c,d,e | a2=b2=c3=d7=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Character table of A4×D7
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | 7A | 7B | 7C | 14A | 14B | 14C | 21A | 21B | 21C | 21D | 21E | 21F | |
size | 1 | 3 | 7 | 21 | 4 | 4 | 28 | 28 | 2 | 2 | 2 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 6 |
ρ5 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ10 | 2 | 2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ3ζ76+ζ3ζ7 | ζ3ζ75+ζ3ζ72 | ζ32ζ76+ζ32ζ7 | ζ32ζ75+ζ32ζ72 | ζ32ζ74+ζ32ζ73 | ζ3ζ74+ζ3ζ73 | complex lifted from C3×D7 |
ρ11 | 2 | 2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ3ζ74+ζ3ζ73 | ζ3ζ76+ζ3ζ7 | ζ32ζ74+ζ32ζ73 | ζ32ζ76+ζ32ζ7 | ζ32ζ75+ζ32ζ72 | ζ3ζ75+ζ3ζ72 | complex lifted from C3×D7 |
ρ12 | 2 | 2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ32ζ75+ζ32ζ72 | ζ32ζ74+ζ32ζ73 | ζ3ζ75+ζ3ζ72 | ζ3ζ74+ζ3ζ73 | ζ3ζ76+ζ3ζ7 | ζ32ζ76+ζ32ζ7 | complex lifted from C3×D7 |
ρ13 | 2 | 2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ32ζ74+ζ32ζ73 | ζ32ζ76+ζ32ζ7 | ζ3ζ74+ζ3ζ73 | ζ3ζ76+ζ3ζ7 | ζ3ζ75+ζ3ζ72 | ζ32ζ75+ζ32ζ72 | complex lifted from C3×D7 |
ρ14 | 2 | 2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ3ζ75+ζ3ζ72 | ζ3ζ74+ζ3ζ73 | ζ32ζ75+ζ32ζ72 | ζ32ζ74+ζ32ζ73 | ζ32ζ76+ζ32ζ7 | ζ3ζ76+ζ3ζ7 | complex lifted from C3×D7 |
ρ15 | 2 | 2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ32ζ76+ζ32ζ7 | ζ32ζ75+ζ32ζ72 | ζ3ζ76+ζ3ζ7 | ζ3ζ75+ζ3ζ72 | ζ3ζ74+ζ3ζ73 | ζ32ζ74+ζ32ζ73 | complex lifted from C3×D7 |
ρ16 | 3 | -1 | -3 | 1 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ17 | 3 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ18 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ74+3ζ73 | 3ζ76+3ζ7 | 3ζ75+3ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ19 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ76+3ζ7 | 3ζ75+3ζ72 | 3ζ74+3ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ20 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ75+3ζ72 | 3ζ74+3ζ73 | 3ζ76+3ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)
(8 15 22)(9 16 23)(10 17 24)(11 18 25)(12 19 26)(13 20 27)(14 21 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)
G:=sub<Sym(28)| (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (8,15,22)(9,16,23)(10,17,24)(11,18,25)(12,19,26)(13,20,27)(14,21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)>;
G:=Group( (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (8,15,22)(9,16,23)(10,17,24)(11,18,25)(12,19,26)(13,20,27)(14,21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27) );
G=PermutationGroup([[(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28)], [(8,15,22),(9,16,23),(10,17,24),(11,18,25),(12,19,26),(13,20,27),(14,21,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27)]])
G:=TransitiveGroup(28,29);
A4×D7 is a maximal quotient of Dic7.2A4
Matrix representation of A4×D7 ►in GL5(𝔽43)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 26 | 0 |
0 | 0 | 0 | 42 | 0 |
0 | 0 | 23 | 41 | 42 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 26 |
0 | 0 | 23 | 42 | 41 |
0 | 0 | 0 | 0 | 42 |
36 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 23 | 42 | 42 |
0 | 0 | 0 | 1 | 0 |
27 | 2 | 0 | 0 | 0 |
42 | 35 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
27 | 40 | 0 | 0 | 0 |
42 | 16 | 0 | 0 | 0 |
0 | 0 | 42 | 0 | 0 |
0 | 0 | 0 | 42 | 0 |
0 | 0 | 0 | 0 | 42 |
G:=sub<GL(5,GF(43))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,23,0,0,26,42,41,0,0,0,0,42],[1,0,0,0,0,0,1,0,0,0,0,0,1,23,0,0,0,0,42,0,0,0,26,41,42],[36,0,0,0,0,0,36,0,0,0,0,0,1,23,0,0,0,0,42,1,0,0,0,42,0],[27,42,0,0,0,2,35,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[27,42,0,0,0,40,16,0,0,0,0,0,42,0,0,0,0,0,42,0,0,0,0,0,42] >;
A4×D7 in GAP, Magma, Sage, TeX
A_4\times D_7
% in TeX
G:=Group("A4xD7");
// GroupNames label
G:=SmallGroup(168,48);
// by ID
G=gap.SmallGroup(168,48);
# by ID
G:=PCGroup([5,-2,-3,-2,2,-7,142,68,3604]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^7=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export
Subgroup lattice of A4×D7 in TeX
Character table of A4×D7 in TeX