Copied to
clipboard

G = A4×D7order 168 = 23·3·7

Direct product of A4 and D7

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×D7, C73(C2×A4), C22⋊(C3×D7), (C7×A4)⋊2C2, (C2×C14)⋊1C6, (C22×D7)⋊1C3, SmallGroup(168,48)

Series: Derived Chief Lower central Upper central

C1C2×C14 — A4×D7
C1C7C2×C14C7×A4 — A4×D7
C2×C14 — A4×D7
C1

Generators and relations for A4×D7
 G = < a,b,c,d,e | a2=b2=c3=d7=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

3C2
7C2
21C2
4C3
21C22
21C22
28C6
3C14
3D7
4C21
7C23
3D14
3D14
4C3×D7
7C2×A4

Character table of A4×D7

 class 12A2B2C3A3B6A6B7A7B7C14A14B14C21A21B21C21D21E21F
 size 13721442828222666888888
ρ111111111111111111111    trivial
ρ211-1-111-1-1111111111111    linear of order 2
ρ31111ζ32ζ3ζ3ζ32111111ζ3ζ3ζ32ζ32ζ32ζ3    linear of order 3
ρ411-1-1ζ3ζ32ζ6ζ65111111ζ32ζ32ζ3ζ3ζ3ζ32    linear of order 6
ρ511-1-1ζ32ζ3ζ65ζ6111111ζ3ζ3ζ32ζ32ζ32ζ3    linear of order 6
ρ61111ζ3ζ32ζ32ζ3111111ζ32ζ32ζ3ζ3ζ3ζ32    linear of order 3
ρ722002200ζ767ζ7572ζ7473ζ7572ζ767ζ7473ζ767ζ7572ζ767ζ7572ζ7473ζ7473    orthogonal lifted from D7
ρ822002200ζ7572ζ7473ζ767ζ7473ζ7572ζ767ζ7572ζ7473ζ7572ζ7473ζ767ζ767    orthogonal lifted from D7
ρ922002200ζ7473ζ767ζ7572ζ767ζ7473ζ7572ζ7473ζ767ζ7473ζ767ζ7572ζ7572    orthogonal lifted from D7
ρ102200-1--3-1+-300ζ767ζ7572ζ7473ζ7572ζ767ζ7473ζ3ζ763ζ7ζ3ζ753ζ72ζ32ζ7632ζ7ζ32ζ7532ζ72ζ32ζ7432ζ73ζ3ζ743ζ73    complex lifted from C3×D7
ρ112200-1--3-1+-300ζ7473ζ767ζ7572ζ767ζ7473ζ7572ζ3ζ743ζ73ζ3ζ763ζ7ζ32ζ7432ζ73ζ32ζ7632ζ7ζ32ζ7532ζ72ζ3ζ753ζ72    complex lifted from C3×D7
ρ122200-1+-3-1--300ζ7572ζ7473ζ767ζ7473ζ7572ζ767ζ32ζ7532ζ72ζ32ζ7432ζ73ζ3ζ753ζ72ζ3ζ743ζ73ζ3ζ763ζ7ζ32ζ7632ζ7    complex lifted from C3×D7
ρ132200-1+-3-1--300ζ7473ζ767ζ7572ζ767ζ7473ζ7572ζ32ζ7432ζ73ζ32ζ7632ζ7ζ3ζ743ζ73ζ3ζ763ζ7ζ3ζ753ζ72ζ32ζ7532ζ72    complex lifted from C3×D7
ρ142200-1--3-1+-300ζ7572ζ7473ζ767ζ7473ζ7572ζ767ζ3ζ753ζ72ζ3ζ743ζ73ζ32ζ7532ζ72ζ32ζ7432ζ73ζ32ζ7632ζ7ζ3ζ763ζ7    complex lifted from C3×D7
ρ152200-1+-3-1--300ζ767ζ7572ζ7473ζ7572ζ767ζ7473ζ32ζ7632ζ7ζ32ζ7532ζ72ζ3ζ763ζ7ζ3ζ753ζ72ζ3ζ743ζ73ζ32ζ7432ζ73    complex lifted from C3×D7
ρ163-1-310000333-1-1-1000000    orthogonal lifted from C2×A4
ρ173-13-10000333-1-1-1000000    orthogonal lifted from A4
ρ186-200000074+3ζ7376+3ζ775+3ζ7276774737572000000    orthogonal faithful
ρ196-200000076+3ζ775+3ζ7274+3ζ7375727677473000000    orthogonal faithful
ρ206-200000075+3ζ7274+3ζ7376+3ζ774737572767000000    orthogonal faithful

Permutation representations of A4×D7
On 28 points - transitive group 28T29
Generators in S28
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)
(1 20)(2 21)(3 15)(4 16)(5 17)(6 18)(7 19)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)
(8 15 22)(9 16 23)(10 17 24)(11 18 25)(12 19 26)(13 20 27)(14 21 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)

G:=sub<Sym(28)| (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (8,15,22)(9,16,23)(10,17,24)(11,18,25)(12,19,26)(13,20,27)(14,21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)>;

G:=Group( (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,20)(2,21)(3,15)(4,16)(5,17)(6,18)(7,19)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28), (8,15,22)(9,16,23)(10,17,24)(11,18,25)(12,19,26)(13,20,27)(14,21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27) );

G=PermutationGroup([[(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28)], [(1,20),(2,21),(3,15),(4,16),(5,17),(6,18),(7,19),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28)], [(8,15,22),(9,16,23),(10,17,24),(11,18,25),(12,19,26),(13,20,27),(14,21,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27)]])

G:=TransitiveGroup(28,29);

A4×D7 is a maximal quotient of   Dic7.2A4

Matrix representation of A4×D7 in GL5(𝔽43)

10000
01000
001260
000420
00234142
,
10000
01000
001026
00234241
000042
,
360000
036000
00100
00234242
00010
,
272000
4235000
00100
00010
00001
,
2740000
4216000
004200
000420
000042

G:=sub<GL(5,GF(43))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,23,0,0,26,42,41,0,0,0,0,42],[1,0,0,0,0,0,1,0,0,0,0,0,1,23,0,0,0,0,42,0,0,0,26,41,42],[36,0,0,0,0,0,36,0,0,0,0,0,1,23,0,0,0,0,42,1,0,0,0,42,0],[27,42,0,0,0,2,35,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[27,42,0,0,0,40,16,0,0,0,0,0,42,0,0,0,0,0,42,0,0,0,0,0,42] >;

A4×D7 in GAP, Magma, Sage, TeX

A_4\times D_7
% in TeX

G:=Group("A4xD7");
// GroupNames label

G:=SmallGroup(168,48);
// by ID

G=gap.SmallGroup(168,48);
# by ID

G:=PCGroup([5,-2,-3,-2,2,-7,142,68,3604]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^7=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of A4×D7 in TeX
Character table of A4×D7 in TeX

׿
×
𝔽