Extensions 1→N→G→Q→1 with N=C4 and Q=D42

Direct product G=N×Q with N=C4 and Q=D42
dρLabelID
C2×C4×D21168C2xC4xD21336,195

Semidirect products G=N:Q with N=C4 and Q=D42
extensionφ:Q→Aut NdρLabelID
C41D42 = D4×D21φ: D42/D21C2 ⊆ Aut C4844+C4:1D42336,198
C42D42 = C2×D84φ: D42/C42C2 ⊆ Aut C4168C4:2D42336,196

Non-split extensions G=N.Q with N=C4 and Q=D42
extensionφ:Q→Aut NdρLabelID
C4.1D42 = D4⋊D21φ: D42/D21C2 ⊆ Aut C41684+C4.1D42336,101
C4.2D42 = D4.D21φ: D42/D21C2 ⊆ Aut C41684-C4.2D42336,102
C4.3D42 = Q82D21φ: D42/D21C2 ⊆ Aut C41684+C4.3D42336,103
C4.4D42 = C217Q16φ: D42/D21C2 ⊆ Aut C43364-C4.4D42336,104
C4.5D42 = D42D21φ: D42/D21C2 ⊆ Aut C41684-C4.5D42336,199
C4.6D42 = Q8×D21φ: D42/D21C2 ⊆ Aut C41684-C4.6D42336,200
C4.7D42 = Q83D21φ: D42/D21C2 ⊆ Aut C41684+C4.7D42336,201
C4.8D42 = C8⋊D21φ: D42/C42C2 ⊆ Aut C41682C4.8D42336,92
C4.9D42 = D168φ: D42/C42C2 ⊆ Aut C41682+C4.9D42336,93
C4.10D42 = Dic84φ: D42/C42C2 ⊆ Aut C43362-C4.10D42336,94
C4.11D42 = C2×Dic42φ: D42/C42C2 ⊆ Aut C4336C4.11D42336,194
C4.12D42 = C8×D21central extension (φ=1)1682C4.12D42336,90
C4.13D42 = C56⋊S3central extension (φ=1)1682C4.13D42336,91
C4.14D42 = C2×C21⋊C8central extension (φ=1)336C4.14D42336,95
C4.15D42 = C84.C4central extension (φ=1)1682C4.15D42336,96
C4.16D42 = D8411C2central extension (φ=1)1682C4.16D42336,197

׿
×
𝔽