extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1(C3⋊S3) = C33⋊Dic3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 36 | 6- | (C3xC6).1(C3:S3) | 324,22 |
(C3×C6).2(C3⋊S3) = He3.3Dic3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 108 | 6- | (C3xC6).2(C3:S3) | 324,23 |
(C3×C6).3(C3⋊S3) = He3⋊Dic3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 108 | 6- | (C3xC6).3(C3:S3) | 324,24 |
(C3×C6).4(C3⋊S3) = 3- 1+2.Dic3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 108 | 6- | (C3xC6).4(C3:S3) | 324,25 |
(C3×C6).5(C3⋊S3) = C2×C33⋊S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 18 | 6+ | (C3xC6).5(C3:S3) | 324,77 |
(C3×C6).6(C3⋊S3) = C2×He3.3S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 54 | 6+ | (C3xC6).6(C3:S3) | 324,78 |
(C3×C6).7(C3⋊S3) = C2×He3⋊S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 54 | 6+ | (C3xC6).7(C3:S3) | 324,79 |
(C3×C6).8(C3⋊S3) = C2×3- 1+2.S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 54 | 6+ | (C3xC6).8(C3:S3) | 324,80 |
(C3×C6).9(C3⋊S3) = C33⋊4C12 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 108 | | (C3xC6).9(C3:S3) | 324,98 |
(C3×C6).10(C3⋊S3) = C33.Dic3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 108 | | (C3xC6).10(C3:S3) | 324,100 |
(C3×C6).11(C3⋊S3) = He3.4Dic3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 108 | 6- | (C3xC6).11(C3:S3) | 324,101 |
(C3×C6).12(C3⋊S3) = He3⋊6Dic3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).12(C3:S3) | 324,104 |
(C3×C6).13(C3⋊S3) = C2×C33.S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 54 | | (C3xC6).13(C3:S3) | 324,146 |
(C3×C6).14(C3⋊S3) = C2×He3.4S3 | φ: C3⋊S3/C3 → S3 ⊆ Aut C3×C6 | 54 | 6+ | (C3xC6).14(C3:S3) | 324,147 |
(C3×C6).15(C3⋊S3) = C9⋊Dic9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C6 | 324 | | (C3xC6).15(C3:S3) | 324,19 |
(C3×C6).16(C3⋊S3) = C32⋊2Dic9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).16(C3:S3) | 324,20 |
(C3×C6).17(C3⋊S3) = C2×C9⋊D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C6 | 162 | | (C3xC6).17(C3:S3) | 324,74 |
(C3×C6).18(C3⋊S3) = C2×C32⋊2D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).18(C3:S3) | 324,75 |
(C3×C6).19(C3⋊S3) = C3×C9⋊Dic3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).19(C3:S3) | 324,96 |
(C3×C6).20(C3⋊S3) = C32⋊5Dic9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C6 | 324 | | (C3xC6).20(C3:S3) | 324,103 |
(C3×C6).21(C3⋊S3) = C6×C9⋊S3 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).21(C3:S3) | 324,142 |
(C3×C6).22(C3⋊S3) = C2×C32⋊4D9 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C6 | 162 | | (C3xC6).22(C3:S3) | 324,149 |
(C3×C6).23(C3⋊S3) = C3×C33⋊5C4 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).23(C3:S3) | 324,157 |
(C3×C6).24(C3⋊S3) = C34⋊8C4 | φ: C3⋊S3/C32 → C2 ⊆ Aut C3×C6 | 324 | | (C3xC6).24(C3:S3) | 324,158 |
(C3×C6).25(C3⋊S3) = C3×He3⋊3C4 | central extension (φ=1) | 108 | | (C3xC6).25(C3:S3) | 324,99 |
(C3×C6).26(C3⋊S3) = C6×He3⋊C2 | central extension (φ=1) | 54 | | (C3xC6).26(C3:S3) | 324,145 |
(C3×C6).27(C3⋊S3) = C32×C3⋊Dic3 | central extension (φ=1) | 36 | | (C3xC6).27(C3:S3) | 324,156 |