Copied to
clipboard

G = C2×C19⋊C9order 342 = 2·32·19

Direct product of C2 and C19⋊C9

direct product, metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary

Aliases: C2×C19⋊C9, C38⋊C9, C192C18, C19⋊C3.2C6, (C2×C19⋊C3).C3, SmallGroup(342,8)

Series: Derived Chief Lower central Upper central

C1C19 — C2×C19⋊C9
C1C19C19⋊C3C19⋊C9 — C2×C19⋊C9
C19 — C2×C19⋊C9
C1C2

Generators and relations for C2×C19⋊C9
 G = < a,b,c | a2=b19=c9=1, ab=ba, ac=ca, cbc-1=b5 >

19C3
19C6
19C9
19C18

Character table of C2×C19⋊C9

 class 123A3B6A6B9A9B9C9D9E9F18A18B18C18D18E18F19A19B38A38B
 size 11191919191919191919191919191919199999
ρ11111111111111111111111    trivial
ρ21-111-1-1111111-1-1-1-1-1-111-1-1    linear of order 2
ρ3111111ζ32ζ32ζ3ζ3ζ3ζ32ζ3ζ32ζ32ζ32ζ3ζ31111    linear of order 3
ρ41-111-1-1ζ3ζ3ζ32ζ32ζ32ζ3ζ6ζ65ζ65ζ65ζ6ζ611-1-1    linear of order 6
ρ51-111-1-1ζ32ζ32ζ3ζ3ζ3ζ32ζ65ζ6ζ6ζ6ζ65ζ6511-1-1    linear of order 6
ρ6111111ζ3ζ3ζ32ζ32ζ32ζ3ζ32ζ3ζ3ζ3ζ32ζ321111    linear of order 3
ρ71-1ζ32ζ3ζ6ζ65ζ94ζ97ζ92ζ95ζ98ζ99899497929511-1-1    linear of order 18
ρ81-1ζ32ζ3ζ6ζ65ζ9ζ94ζ95ζ98ζ92ζ979297994959811-1-1    linear of order 18
ρ911ζ3ζ32ζ3ζ32ζ95ζ92ζ97ζ94ζ9ζ98ζ9ζ98ζ95ζ92ζ97ζ941111    linear of order 9
ρ101-1ζ3ζ32ζ65ζ6ζ95ζ92ζ97ζ94ζ9ζ989989592979411-1-1    linear of order 18
ρ1111ζ32ζ3ζ32ζ3ζ94ζ97ζ92ζ95ζ98ζ9ζ98ζ9ζ94ζ97ζ92ζ951111    linear of order 9
ρ1211ζ3ζ32ζ3ζ32ζ98ζ95ζ94ζ9ζ97ζ92ζ97ζ92ζ98ζ95ζ94ζ91111    linear of order 9
ρ131-1ζ32ζ3ζ6ζ65ζ97ζ9ζ98ζ92ζ95ζ949594979989211-1-1    linear of order 18
ρ1411ζ32ζ3ζ32ζ3ζ9ζ94ζ95ζ98ζ92ζ97ζ92ζ97ζ9ζ94ζ95ζ981111    linear of order 9
ρ1511ζ3ζ32ζ3ζ32ζ92ζ98ζ9ζ97ζ94ζ95ζ94ζ95ζ92ζ98ζ9ζ971111    linear of order 9
ρ161-1ζ3ζ32ζ65ζ6ζ92ζ98ζ9ζ97ζ94ζ959495929899711-1-1    linear of order 18
ρ1711ζ32ζ3ζ32ζ3ζ97ζ9ζ98ζ92ζ95ζ94ζ95ζ94ζ97ζ9ζ98ζ921111    linear of order 9
ρ181-1ζ3ζ32ζ65ζ6ζ98ζ95ζ94ζ9ζ97ζ929792989594911-1-1    linear of order 18
ρ19990000000000000000-1+-19/2-1--19/2-1--19/2-1+-19/2    complex lifted from C19⋊C9
ρ209-90000000000000000-1--19/2-1+-19/21--19/21+-19/2    complex faithful
ρ219-90000000000000000-1+-19/2-1--19/21+-19/21--19/2    complex faithful
ρ22990000000000000000-1--19/2-1+-19/2-1+-19/2-1--19/2    complex lifted from C19⋊C9

Smallest permutation representation of C2×C19⋊C9
On 38 points
Generators in S38
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)
(2 5 17 8 10 18 12 7 6)(3 9 14 15 19 16 4 13 11)(21 24 36 27 29 37 31 26 25)(22 28 33 34 38 35 23 32 30)

G:=sub<Sym(38)| (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38), (2,5,17,8,10,18,12,7,6)(3,9,14,15,19,16,4,13,11)(21,24,36,27,29,37,31,26,25)(22,28,33,34,38,35,23,32,30)>;

G:=Group( (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38), (2,5,17,8,10,18,12,7,6)(3,9,14,15,19,16,4,13,11)(21,24,36,27,29,37,31,26,25)(22,28,33,34,38,35,23,32,30) );

G=PermutationGroup([[(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)], [(2,5,17,8,10,18,12,7,6),(3,9,14,15,19,16,4,13,11),(21,24,36,27,29,37,31,26,25),(22,28,33,34,38,35,23,32,30)]])

Matrix representation of C2×C19⋊C9 in GL9(𝔽2053)

205200000000
020520000000
002052000000
000205200000
000020520000
000002052000
000000205200
000000020520
000000002052
,
85821193856861119620518591
100000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
,
100000000
000001000
119420498603381190171631192856
1718511915198651532204917211198
010000000
000000100
8561720337204652312013341715862
119833417158651531204617183391192
001000000

G:=sub<GL(9,GF(2053))| [2052,0,0,0,0,0,0,0,0,0,2052,0,0,0,0,0,0,0,0,0,2052,0,0,0,0,0,0,0,0,0,2052,0,0,0,0,0,0,0,0,0,2052,0,0,0,0,0,0,0,0,0,2052,0,0,0,0,0,0,0,0,0,2052,0,0,0,0,0,0,0,0,0,2052,0,0,0,0,0,0,0,0,0,2052],[858,1,0,0,0,0,0,0,0,2,0,1,0,0,0,0,0,0,1193,0,0,1,0,0,0,0,0,856,0,0,0,1,0,0,0,0,861,0,0,0,0,1,0,0,0,1196,0,0,0,0,0,1,0,0,2051,0,0,0,0,0,0,1,0,859,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0],[1,0,1194,1718,0,0,856,1198,0,0,0,2049,5,1,0,1720,334,0,0,0,860,1191,0,0,337,1715,1,0,0,338,519,0,0,2046,865,0,0,0,1190,865,0,0,523,1531,0,0,1,1716,1532,0,0,1201,2046,0,0,0,3,2049,0,1,334,1718,0,0,0,1192,1721,0,0,1715,339,0,0,0,856,1198,0,0,862,1192,0] >;

C2×C19⋊C9 in GAP, Magma, Sage, TeX

C_2\times C_{19}\rtimes C_9
% in TeX

G:=Group("C2xC19:C9");
// GroupNames label

G:=SmallGroup(342,8);
// by ID

G=gap.SmallGroup(342,8);
# by ID

G:=PCGroup([4,-2,-3,-3,-19,29,583,347]);
// Polycyclic

G:=Group<a,b,c|a^2=b^19=c^9=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C2×C19⋊C9 in TeX
Character table of C2×C19⋊C9 in TeX

׿
×
𝔽