direct product, metabelian, supersoluble, monomial, A-group
Aliases: C3⋊S3×C7⋊C3, C21⋊3(C3×S3), (C3×C21)⋊11C6, C3⋊(S3×C7⋊C3), C7⋊2(C3×C3⋊S3), (C3×C7⋊C3)⋊5S3, (C7×C3⋊S3)⋊3C3, (C32×C7⋊C3)⋊5C2, C32⋊4(C2×C7⋊C3), SmallGroup(378,50)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C21 — C3×C21 — C32×C7⋊C3 — C3⋊S3×C7⋊C3 |
C3×C21 — C3⋊S3×C7⋊C3 |
Generators and relations for C3⋊S3×C7⋊C3
G = < a,b,c,d,e | a3=b3=c2=d7=e3=1, ab=ba, cac=a-1, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d4 >
Subgroups: 408 in 64 conjugacy classes, 21 normal (9 characteristic)
C1, C2, C3, C3, S3, C6, C7, C32, C32, C14, C3×S3, C3⋊S3, C7⋊C3, C7⋊C3, C21, C33, C2×C7⋊C3, S3×C7, C3×C3⋊S3, C3×C7⋊C3, C3×C7⋊C3, C3×C21, S3×C7⋊C3, C7×C3⋊S3, C32×C7⋊C3, C3⋊S3×C7⋊C3
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, C7⋊C3, C2×C7⋊C3, C3×C3⋊S3, S3×C7⋊C3, C3⋊S3×C7⋊C3
Character table of C3⋊S3×C7⋊C3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 3N | 6A | 6B | 7A | 7B | 14A | 14B | 21A | 21B | 21C | 21D | 21E | 21F | 21G | 21H | |
size | 1 | 9 | 2 | 2 | 2 | 2 | 7 | 7 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 63 | 63 | 3 | 3 | 27 | 27 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ6 | ζ65 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | -1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ65 | ζ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ7 | 2 | 0 | -1 | -1 | 2 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ11 | 2 | 0 | -1 | 2 | -1 | -1 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | ζ6 | -1-√-3 | ζ6 | ζ65 | ζ65 | -1+√-3 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | complex lifted from C3×S3 |
ρ12 | 2 | 0 | 2 | -1 | -1 | -1 | -1-√-3 | -1+√-3 | ζ65 | ζ6 | -1-√-3 | ζ6 | ζ6 | ζ65 | -1+√-3 | ζ65 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | complex lifted from C3×S3 |
ρ13 | 2 | 0 | -1 | 2 | -1 | -1 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | ζ65 | -1+√-3 | ζ65 | ζ6 | ζ6 | -1-√-3 | 0 | 0 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | complex lifted from C3×S3 |
ρ14 | 2 | 0 | -1 | -1 | 2 | -1 | -1+√-3 | -1-√-3 | -1-√-3 | ζ65 | ζ65 | ζ65 | -1+√-3 | ζ6 | ζ6 | ζ6 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | complex lifted from C3×S3 |
ρ15 | 2 | 0 | 2 | -1 | -1 | -1 | -1+√-3 | -1-√-3 | ζ6 | ζ65 | -1+√-3 | ζ65 | ζ65 | ζ6 | -1-√-3 | ζ6 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | complex lifted from C3×S3 |
ρ16 | 2 | 0 | -1 | -1 | -1 | 2 | -1+√-3 | -1-√-3 | ζ6 | -1+√-3 | ζ65 | ζ65 | ζ65 | -1-√-3 | ζ6 | ζ6 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ17 | 2 | 0 | -1 | -1 | 2 | -1 | -1-√-3 | -1+√-3 | -1+√-3 | ζ6 | ζ6 | ζ6 | -1-√-3 | ζ65 | ζ65 | ζ65 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | complex lifted from C3×S3 |
ρ18 | 2 | 0 | -1 | -1 | -1 | 2 | -1-√-3 | -1+√-3 | ζ65 | -1-√-3 | ζ6 | ζ6 | ζ6 | -1+√-3 | ζ65 | ζ65 | 0 | 0 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ19 | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ20 | 3 | 3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ21 | 3 | -3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | 1-√-7/2 | 1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C2×C7⋊C3 |
ρ22 | 3 | -3 | 3 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | 1+√-7/2 | 1-√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C2×C7⋊C3 |
ρ23 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7 | -1+√-7 | 0 | 0 | -1-√-7 | 1+√-7/2 | 1-√-7/2 | 1-√-7/2 | 1-√-7/2 | 1+√-7/2 | -1+√-7 | 1+√-7/2 | complex lifted from S3×C7⋊C3 |
ρ24 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7 | -1+√-7 | 0 | 0 | 1+√-7/2 | -1-√-7 | -1+√-7 | 1-√-7/2 | 1-√-7/2 | 1+√-7/2 | 1-√-7/2 | 1+√-7/2 | complex lifted from S3×C7⋊C3 |
ρ25 | 6 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7 | -1+√-7 | 0 | 0 | 1+√-7/2 | 1+√-7/2 | 1-√-7/2 | -1+√-7 | 1-√-7/2 | 1+√-7/2 | 1-√-7/2 | -1-√-7 | complex lifted from S3×C7⋊C3 |
ρ26 | 6 | 0 | -3 | 6 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7 | -1-√-7 | 0 | 0 | -1+√-7 | 1-√-7/2 | 1+√-7/2 | 1+√-7/2 | 1+√-7/2 | 1-√-7/2 | -1-√-7 | 1-√-7/2 | complex lifted from S3×C7⋊C3 |
ρ27 | 6 | 0 | -3 | -3 | -3 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7 | -1-√-7 | 0 | 0 | 1-√-7/2 | -1+√-7 | -1-√-7 | 1+√-7/2 | 1+√-7/2 | 1-√-7/2 | 1+√-7/2 | 1-√-7/2 | complex lifted from S3×C7⋊C3 |
ρ28 | 6 | 0 | 6 | -3 | -3 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7 | -1-√-7 | 0 | 0 | 1-√-7/2 | 1-√-7/2 | 1+√-7/2 | -1-√-7 | 1+√-7/2 | 1-√-7/2 | 1+√-7/2 | -1+√-7 | complex lifted from S3×C7⋊C3 |
ρ29 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7 | -1-√-7 | 0 | 0 | 1-√-7/2 | 1-√-7/2 | 1+√-7/2 | 1+√-7/2 | -1-√-7 | -1+√-7 | 1+√-7/2 | 1-√-7/2 | complex lifted from S3×C7⋊C3 |
ρ30 | 6 | 0 | -3 | -3 | 6 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7 | -1+√-7 | 0 | 0 | 1+√-7/2 | 1+√-7/2 | 1-√-7/2 | 1-√-7/2 | -1+√-7 | -1-√-7 | 1-√-7/2 | 1+√-7/2 | complex lifted from S3×C7⋊C3 |
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(1 22 43)(2 23 44)(3 24 45)(4 25 46)(5 26 47)(6 27 48)(7 28 49)(8 29 50)(9 30 51)(10 31 52)(11 32 53)(12 33 54)(13 34 55)(14 35 56)(15 36 57)(16 37 58)(17 38 59)(18 39 60)(19 40 61)(20 41 62)(21 42 63)
(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 57)(30 58)(31 59)(32 60)(33 61)(34 62)(35 63)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)(30 31 33)(32 35 34)(37 38 40)(39 42 41)(44 45 47)(46 49 48)(51 52 54)(53 56 55)(58 59 61)(60 63 62)
G:=sub<Sym(63)| (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,22,43)(2,23,44)(3,24,45)(4,25,46)(5,26,47)(6,27,48)(7,28,49)(8,29,50)(9,30,51)(10,31,52)(11,32,53)(12,33,54)(13,34,55)(14,35,56)(15,36,57)(16,37,58)(17,38,59)(18,39,60)(19,40,61)(20,41,62)(21,42,63), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55)(58,59,61)(60,63,62)>;
G:=Group( (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,22,43)(2,23,44)(3,24,45)(4,25,46)(5,26,47)(6,27,48)(7,28,49)(8,29,50)(9,30,51)(10,31,52)(11,32,53)(12,33,54)(13,34,55)(14,35,56)(15,36,57)(16,37,58)(17,38,59)(18,39,60)(19,40,61)(20,41,62)(21,42,63), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55)(58,59,61)(60,63,62) );
G=PermutationGroup([[(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(1,22,43),(2,23,44),(3,24,45),(4,25,46),(5,26,47),(6,27,48),(7,28,49),(8,29,50),(9,30,51),(10,31,52),(11,32,53),(12,33,54),(13,34,55),(14,35,56),(15,36,57),(16,37,58),(17,38,59),(18,39,60),(19,40,61),(20,41,62),(21,42,63)], [(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,57),(30,58),(31,59),(32,60),(33,61),(34,62),(35,63),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27),(30,31,33),(32,35,34),(37,38,40),(39,42,41),(44,45,47),(46,49,48),(51,52,54),(53,56,55),(58,59,61),(60,63,62)]])
Matrix representation of C3⋊S3×C7⋊C3 ►in GL7(𝔽43)
0 | 1 | 0 | 0 | 0 | 0 | 0 |
42 | 42 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 41 | 37 | 0 | 0 | 0 |
0 | 0 | 22 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
42 | 42 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
42 | 42 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 21 | 42 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 24 | 25 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
36 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 18 | 42 | 42 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(7,GF(43))| [0,42,0,0,0,0,0,1,42,0,0,0,0,0,0,0,41,22,0,0,0,0,0,37,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[42,1,0,0,0,0,0,42,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,42,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,21,0,0,0,0,0,0,42,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,24,1,0,0,0,0,0,25,0,1,0,0,0,0,1,0,0],[36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,1,18,0,0,0,0,0,0,42,1,0,0,0,0,0,42,0] >;
C3⋊S3×C7⋊C3 in GAP, Magma, Sage, TeX
C_3\rtimes S_3\times C_7\rtimes C_3
% in TeX
G:=Group("C3:S3xC7:C3");
// GroupNames label
G:=SmallGroup(378,50);
// by ID
G=gap.SmallGroup(378,50);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-7,182,723,1359]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^7=e^3=1,a*b=b*a,c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^4>;
// generators/relations
Export