Extensions 1→N→G→Q→1 with N=C3 and Q=S3×C7⋊C3

Direct product G=N×Q with N=C3 and Q=S3×C7⋊C3
dρLabelID
C3×S3×C7⋊C3426C3xS3xC7:C3378,48

Semidirect products G=N:Q with N=C3 and Q=S3×C7⋊C3
extensionφ:Q→Aut NdρLabelID
C3⋊(S3×C7⋊C3) = C3⋊S3×C7⋊C3φ: S3×C7⋊C3/C3×C7⋊C3C2 ⊆ Aut C363C3:(S3xC7:C3)378,50

Non-split extensions G=N.Q with N=C3 and Q=S3×C7⋊C3
extensionφ:Q→Aut NdρLabelID
C3.1(S3×C7⋊C3) = C63⋊C6φ: S3×C7⋊C3/C3×C7⋊C3C2 ⊆ Aut C3636C3.1(S3xC7:C3)378,13
C3.2(S3×C7⋊C3) = C636C6φ: S3×C7⋊C3/C3×C7⋊C3C2 ⊆ Aut C3636C3.2(S3xC7:C3)378,14
C3.3(S3×C7⋊C3) = D9×C7⋊C3φ: S3×C7⋊C3/C3×C7⋊C3C2 ⊆ Aut C3636C3.3(S3xC7:C3)378,15
C3.4(S3×C7⋊C3) = C7⋊He3⋊C2φ: S3×C7⋊C3/C3×C7⋊C3C2 ⊆ Aut C3636C3.4(S3xC7:C3)378,17
C3.5(S3×C7⋊C3) = S3×C7⋊C9central extension (φ=1)1266C3.5(S3xC7:C3)378,16

׿
×
𝔽