direct product, metabelian, supersoluble, monomial, A-group
Aliases: C3×S3×F5, D15⋊C12, C3⋊F5⋊C6, C5⋊(S3×C12), (C3×F5)⋊C6, (C5×S3)⋊C12, C15⋊(C2×C12), (S3×D5).C6, C3⋊1(C6×F5), C15⋊4(C4×S3), (S3×C15)⋊2C4, C32⋊5(C2×F5), (C3×D15)⋊1C4, D5.1(S3×C6), (C3×D5).5D6, (C32×F5)⋊1C2, (C32×D5).1C22, (C3×C3⋊F5)⋊1C2, (C3×C15)⋊3(C2×C4), (C3×D5).(C2×C6), (C3×S3×D5).2C2, SmallGroup(360,126)
Series: Derived ►Chief ►Lower central ►Upper central
C15 — C3×S3×F5 |
Generators and relations for C3×S3×F5
G = < a,b,c,d,e | a3=b3=c2=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >
Subgroups: 292 in 70 conjugacy classes, 28 normal (all characteristic)
C1, C2, C3, C3, C4, C22, C5, S3, S3, C6, C2×C4, C32, D5, D5, C10, Dic3, C12, D6, C2×C6, C15, C15, C3×S3, C3×S3, C3×C6, F5, F5, D10, C4×S3, C2×C12, C5×S3, C3×D5, C3×D5, D15, C30, C3×Dic3, C3×C12, S3×C6, C2×F5, C3×C15, C3×F5, C3×F5, C3⋊F5, S3×D5, C6×D5, S3×C12, C32×D5, S3×C15, C3×D15, S3×F5, C6×F5, C32×F5, C3×C3⋊F5, C3×S3×D5, C3×S3×F5
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C12, D6, C2×C6, C3×S3, F5, C4×S3, C2×C12, S3×C6, C2×F5, C3×F5, S3×C12, S3×F5, C6×F5, C3×S3×F5
(1 6 11)(2 7 12)(3 8 13)(4 9 14)(5 10 15)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(1 6 11)(2 7 12)(3 8 13)(4 9 14)(5 10 15)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(2 3 5 4)(7 8 10 9)(12 13 15 14)(17 18 20 19)(22 23 25 24)(27 28 30 29)
G:=sub<Sym(30)| (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)(22,23,25,24)(27,28,30,29)>;
G:=Group( (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (1,6,11)(2,7,12)(3,8,13)(4,9,14)(5,10,15)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25), (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (2,3,5,4)(7,8,10,9)(12,13,15,14)(17,18,20,19)(22,23,25,24)(27,28,30,29) );
G=PermutationGroup([[(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(1,6,11),(2,7,12),(3,8,13),(4,9,14),(5,10,15),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(2,3,5,4),(7,8,10,9),(12,13,15,14),(17,18,20,19),(22,23,25,24),(27,28,30,29)]])
G:=TransitiveGroup(30,91);
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 4D | 5 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 10 | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 12K | 12L | 12M | 12N | 15A | 15B | 15C | 15D | 15E | 30A | 30B |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 15 | 30 | 30 |
size | 1 | 3 | 5 | 15 | 1 | 1 | 2 | 2 | 2 | 5 | 5 | 15 | 15 | 4 | 3 | 3 | 5 | 5 | 10 | 10 | 10 | 15 | 15 | 12 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 15 | 15 | 15 | 15 | 4 | 4 | 8 | 8 | 8 | 12 | 12 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 |
type | + | + | + | + | + | + | + | + | + | |||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C6 | C12 | C12 | S3 | D6 | C3×S3 | C4×S3 | S3×C6 | S3×C12 | F5 | C2×F5 | C3×F5 | C6×F5 | S3×F5 | C3×S3×F5 |
kernel | C3×S3×F5 | C32×F5 | C3×C3⋊F5 | C3×S3×D5 | S3×F5 | S3×C15 | C3×D15 | C3×F5 | C3⋊F5 | S3×D5 | C5×S3 | D15 | C3×F5 | C3×D5 | F5 | C15 | D5 | C5 | C3×S3 | C32 | S3 | C3 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 2 | 2 | 1 | 2 |
Matrix representation of C3×S3×F5 ►in GL6(𝔽61)
47 | 0 | 0 | 0 | 0 | 0 |
0 | 47 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
47 | 0 | 0 | 0 | 0 | 0 |
19 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
60 | 5 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
0 | 0 | 1 | 0 | 0 | 60 |
0 | 0 | 0 | 1 | 0 | 60 |
0 | 0 | 0 | 0 | 1 | 60 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(61))| [47,0,0,0,0,0,0,47,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[47,19,0,0,0,0,0,13,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[60,0,0,0,0,0,5,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,60,60,60,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0] >;
C3×S3×F5 in GAP, Magma, Sage, TeX
C_3\times S_3\times F_5
% in TeX
G:=Group("C3xS3xF5");
// GroupNames label
G:=SmallGroup(360,126);
// by ID
G=gap.SmallGroup(360,126);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-5,72,730,5189,887]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations