Copied to
clipboard

G = S3xC63order 378 = 2·33·7

Direct product of C63 and S3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: S3xC63, C3:C126, C21:7C18, C32.2C42, (C3xC9):1C14, (C3xC63):1C2, (C3xS3).C21, C3.4(S3xC21), (S3xC21).2C3, C21.18(C3xS3), (C3xC21).11C6, SmallGroup(378,33)

Series: Derived Chief Lower central Upper central

C1C3 — S3xC63
C1C3C32C3xC21C3xC63 — S3xC63
C3 — S3xC63
C1C63

Generators and relations for S3xC63
 G = < a,b,c | a63=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 44 in 28 conjugacy classes, 18 normal (all characteristic)
Quotients: C1, C2, C3, S3, C6, C7, C9, C14, C18, C3xS3, C21, S3xC7, C42, S3xC9, C63, C126, S3xC21, S3xC63
3C2
2C3
3C6
2C9
3C14
2C21
3C18
3C42
2C63
3C126

Smallest permutation representation of S3xC63
On 126 points
Generators in S126
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)
(1 22 43)(2 23 44)(3 24 45)(4 25 46)(5 26 47)(6 27 48)(7 28 49)(8 29 50)(9 30 51)(10 31 52)(11 32 53)(12 33 54)(13 34 55)(14 35 56)(15 36 57)(16 37 58)(17 38 59)(18 39 60)(19 40 61)(20 41 62)(21 42 63)(64 106 85)(65 107 86)(66 108 87)(67 109 88)(68 110 89)(69 111 90)(70 112 91)(71 113 92)(72 114 93)(73 115 94)(74 116 95)(75 117 96)(76 118 97)(77 119 98)(78 120 99)(79 121 100)(80 122 101)(81 123 102)(82 124 103)(83 125 104)(84 126 105)
(1 116)(2 117)(3 118)(4 119)(5 120)(6 121)(7 122)(8 123)(9 124)(10 125)(11 126)(12 64)(13 65)(14 66)(15 67)(16 68)(17 69)(18 70)(19 71)(20 72)(21 73)(22 74)(23 75)(24 76)(25 77)(26 78)(27 79)(28 80)(29 81)(30 82)(31 83)(32 84)(33 85)(34 86)(35 87)(36 88)(37 89)(38 90)(39 91)(40 92)(41 93)(42 94)(43 95)(44 96)(45 97)(46 98)(47 99)(48 100)(49 101)(50 102)(51 103)(52 104)(53 105)(54 106)(55 107)(56 108)(57 109)(58 110)(59 111)(60 112)(61 113)(62 114)(63 115)

G:=sub<Sym(126)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,22,43)(2,23,44)(3,24,45)(4,25,46)(5,26,47)(6,27,48)(7,28,49)(8,29,50)(9,30,51)(10,31,52)(11,32,53)(12,33,54)(13,34,55)(14,35,56)(15,36,57)(16,37,58)(17,38,59)(18,39,60)(19,40,61)(20,41,62)(21,42,63)(64,106,85)(65,107,86)(66,108,87)(67,109,88)(68,110,89)(69,111,90)(70,112,91)(71,113,92)(72,114,93)(73,115,94)(74,116,95)(75,117,96)(76,118,97)(77,119,98)(78,120,99)(79,121,100)(80,122,101)(81,123,102)(82,124,103)(83,125,104)(84,126,105), (1,116)(2,117)(3,118)(4,119)(5,120)(6,121)(7,122)(8,123)(9,124)(10,125)(11,126)(12,64)(13,65)(14,66)(15,67)(16,68)(17,69)(18,70)(19,71)(20,72)(21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,79)(28,80)(29,81)(30,82)(31,83)(32,84)(33,85)(34,86)(35,87)(36,88)(37,89)(38,90)(39,91)(40,92)(41,93)(42,94)(43,95)(44,96)(45,97)(46,98)(47,99)(48,100)(49,101)(50,102)(51,103)(52,104)(53,105)(54,106)(55,107)(56,108)(57,109)(58,110)(59,111)(60,112)(61,113)(62,114)(63,115)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,22,43)(2,23,44)(3,24,45)(4,25,46)(5,26,47)(6,27,48)(7,28,49)(8,29,50)(9,30,51)(10,31,52)(11,32,53)(12,33,54)(13,34,55)(14,35,56)(15,36,57)(16,37,58)(17,38,59)(18,39,60)(19,40,61)(20,41,62)(21,42,63)(64,106,85)(65,107,86)(66,108,87)(67,109,88)(68,110,89)(69,111,90)(70,112,91)(71,113,92)(72,114,93)(73,115,94)(74,116,95)(75,117,96)(76,118,97)(77,119,98)(78,120,99)(79,121,100)(80,122,101)(81,123,102)(82,124,103)(83,125,104)(84,126,105), (1,116)(2,117)(3,118)(4,119)(5,120)(6,121)(7,122)(8,123)(9,124)(10,125)(11,126)(12,64)(13,65)(14,66)(15,67)(16,68)(17,69)(18,70)(19,71)(20,72)(21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,79)(28,80)(29,81)(30,82)(31,83)(32,84)(33,85)(34,86)(35,87)(36,88)(37,89)(38,90)(39,91)(40,92)(41,93)(42,94)(43,95)(44,96)(45,97)(46,98)(47,99)(48,100)(49,101)(50,102)(51,103)(52,104)(53,105)(54,106)(55,107)(56,108)(57,109)(58,110)(59,111)(60,112)(61,113)(62,114)(63,115) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)], [(1,22,43),(2,23,44),(3,24,45),(4,25,46),(5,26,47),(6,27,48),(7,28,49),(8,29,50),(9,30,51),(10,31,52),(11,32,53),(12,33,54),(13,34,55),(14,35,56),(15,36,57),(16,37,58),(17,38,59),(18,39,60),(19,40,61),(20,41,62),(21,42,63),(64,106,85),(65,107,86),(66,108,87),(67,109,88),(68,110,89),(69,111,90),(70,112,91),(71,113,92),(72,114,93),(73,115,94),(74,116,95),(75,117,96),(76,118,97),(77,119,98),(78,120,99),(79,121,100),(80,122,101),(81,123,102),(82,124,103),(83,125,104),(84,126,105)], [(1,116),(2,117),(3,118),(4,119),(5,120),(6,121),(7,122),(8,123),(9,124),(10,125),(11,126),(12,64),(13,65),(14,66),(15,67),(16,68),(17,69),(18,70),(19,71),(20,72),(21,73),(22,74),(23,75),(24,76),(25,77),(26,78),(27,79),(28,80),(29,81),(30,82),(31,83),(32,84),(33,85),(34,86),(35,87),(36,88),(37,89),(38,90),(39,91),(40,92),(41,93),(42,94),(43,95),(44,96),(45,97),(46,98),(47,99),(48,100),(49,101),(50,102),(51,103),(52,104),(53,105),(54,106),(55,107),(56,108),(57,109),(58,110),(59,111),(60,112),(61,113),(62,114),(63,115)]])

189 conjugacy classes

class 1  2 3A3B3C3D3E6A6B7A···7F9A···9F9G···9L14A···14F18A···18F21A···21L21M···21AD42A···42L63A···63AJ63AK···63BT126A···126AJ
order1233333667···79···99···914···1418···1821···2121···2142···4263···6363···63126···126
size1311222331···11···12···23···33···31···12···23···31···12···23···3

189 irreducible representations

dim111111111111222222
type+++
imageC1C2C3C6C7C9C14C18C21C42C63C126S3C3xS3S3xC7S3xC9S3xC21S3xC63
kernelS3xC63C3xC63S3xC21C3xC21S3xC9S3xC7C3xC9C21C3xS3C32S3C3C63C21C9C7C3C1
# reps112266661212363612661236

Matrix representation of S3xC63 in GL2(F127) generated by

720
072
,
1070
019
,
01
10
G:=sub<GL(2,GF(127))| [72,0,0,72],[107,0,0,19],[0,1,1,0] >;

S3xC63 in GAP, Magma, Sage, TeX

S_3\times C_{63}
% in TeX

G:=Group("S3xC63");
// GroupNames label

G:=SmallGroup(378,33);
// by ID

G=gap.SmallGroup(378,33);
# by ID

G:=PCGroup([5,-2,-3,-7,-3,-3,216,6304]);
// Polycyclic

G:=Group<a,b,c|a^63=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3xC63 in TeX

׿
x
:
Z
F
o
wr
Q
<