Copied to
clipboard

G = D9xC21order 378 = 2·33·7

Direct product of C21 and D9

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: D9xC21, C9:3C42, C63:18C6, (C3xC9):2C14, (C3xC63):4C2, C3.1(S3xC21), (C3xC21).5S3, C21.15(C3xS3), C32.2(S3xC7), SmallGroup(378,32)

Series: Derived Chief Lower central Upper central

C1C9 — D9xC21
C1C3C9C63C3xC63 — D9xC21
C9 — D9xC21
C1C21

Generators and relations for D9xC21
 G = < a,b,c | a21=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 72 in 28 conjugacy classes, 16 normal (all characteristic)
Quotients: C1, C2, C3, S3, C6, C7, C14, D9, C3xS3, C21, S3xC7, C42, C3xD9, C7xD9, S3xC21, D9xC21
9C2
2C3
3S3
9C6
2C9
9C14
2C21
3C3xS3
3S3xC7
9C42
2C63
3S3xC21

Smallest permutation representation of D9xC21
On 126 points
Generators in S126
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)
(1 112 65 8 119 72 15 126 79)(2 113 66 9 120 73 16 106 80)(3 114 67 10 121 74 17 107 81)(4 115 68 11 122 75 18 108 82)(5 116 69 12 123 76 19 109 83)(6 117 70 13 124 77 20 110 84)(7 118 71 14 125 78 21 111 64)(22 85 50 36 99 43 29 92 57)(23 86 51 37 100 44 30 93 58)(24 87 52 38 101 45 31 94 59)(25 88 53 39 102 46 32 95 60)(26 89 54 40 103 47 33 96 61)(27 90 55 41 104 48 34 97 62)(28 91 56 42 105 49 35 98 63)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(43 119)(44 120)(45 121)(46 122)(47 123)(48 124)(49 125)(50 126)(51 106)(52 107)(53 108)(54 109)(55 110)(56 111)(57 112)(58 113)(59 114)(60 115)(61 116)(62 117)(63 118)(64 91)(65 92)(66 93)(67 94)(68 95)(69 96)(70 97)(71 98)(72 99)(73 100)(74 101)(75 102)(76 103)(77 104)(78 105)(79 85)(80 86)(81 87)(82 88)(83 89)(84 90)

G:=sub<Sym(126)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,112,65,8,119,72,15,126,79)(2,113,66,9,120,73,16,106,80)(3,114,67,10,121,74,17,107,81)(4,115,68,11,122,75,18,108,82)(5,116,69,12,123,76,19,109,83)(6,117,70,13,124,77,20,110,84)(7,118,71,14,125,78,21,111,64)(22,85,50,36,99,43,29,92,57)(23,86,51,37,100,44,30,93,58)(24,87,52,38,101,45,31,94,59)(25,88,53,39,102,46,32,95,60)(26,89,54,40,103,47,33,96,61)(27,90,55,41,104,48,34,97,62)(28,91,56,42,105,49,35,98,63), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(43,119)(44,120)(45,121)(46,122)(47,123)(48,124)(49,125)(50,126)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,116)(62,117)(63,118)(64,91)(65,92)(66,93)(67,94)(68,95)(69,96)(70,97)(71,98)(72,99)(73,100)(74,101)(75,102)(76,103)(77,104)(78,105)(79,85)(80,86)(81,87)(82,88)(83,89)(84,90)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,112,65,8,119,72,15,126,79)(2,113,66,9,120,73,16,106,80)(3,114,67,10,121,74,17,107,81)(4,115,68,11,122,75,18,108,82)(5,116,69,12,123,76,19,109,83)(6,117,70,13,124,77,20,110,84)(7,118,71,14,125,78,21,111,64)(22,85,50,36,99,43,29,92,57)(23,86,51,37,100,44,30,93,58)(24,87,52,38,101,45,31,94,59)(25,88,53,39,102,46,32,95,60)(26,89,54,40,103,47,33,96,61)(27,90,55,41,104,48,34,97,62)(28,91,56,42,105,49,35,98,63), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(43,119)(44,120)(45,121)(46,122)(47,123)(48,124)(49,125)(50,126)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)(61,116)(62,117)(63,118)(64,91)(65,92)(66,93)(67,94)(68,95)(69,96)(70,97)(71,98)(72,99)(73,100)(74,101)(75,102)(76,103)(77,104)(78,105)(79,85)(80,86)(81,87)(82,88)(83,89)(84,90) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)], [(1,112,65,8,119,72,15,126,79),(2,113,66,9,120,73,16,106,80),(3,114,67,10,121,74,17,107,81),(4,115,68,11,122,75,18,108,82),(5,116,69,12,123,76,19,109,83),(6,117,70,13,124,77,20,110,84),(7,118,71,14,125,78,21,111,64),(22,85,50,36,99,43,29,92,57),(23,86,51,37,100,44,30,93,58),(24,87,52,38,101,45,31,94,59),(25,88,53,39,102,46,32,95,60),(26,89,54,40,103,47,33,96,61),(27,90,55,41,104,48,34,97,62),(28,91,56,42,105,49,35,98,63)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(43,119),(44,120),(45,121),(46,122),(47,123),(48,124),(49,125),(50,126),(51,106),(52,107),(53,108),(54,109),(55,110),(56,111),(57,112),(58,113),(59,114),(60,115),(61,116),(62,117),(63,118),(64,91),(65,92),(66,93),(67,94),(68,95),(69,96),(70,97),(71,98),(72,99),(73,100),(74,101),(75,102),(76,103),(77,104),(78,105),(79,85),(80,86),(81,87),(82,88),(83,89),(84,90)]])

126 conjugacy classes

class 1  2 3A3B3C3D3E6A6B7A···7F9A···9I14A···14F21A···21L21M···21AD42A···42L63A···63BB
order1233333667···79···914···1421···2121···2142···4263···63
size1911222991···12···29···91···12···29···92···2

126 irreducible representations

dim1111111122222222
type++++
imageC1C2C3C6C7C14C21C42S3D9C3xS3S3xC7C3xD9C7xD9S3xC21D9xC21
kernelD9xC21C3xC63C7xD9C63C3xD9C3xC9D9C9C3xC21C21C21C32C7C3C3C1
# reps112266121213266181236

Matrix representation of D9xC21 in GL2(F127) generated by

1000
0100
,
520
5322
,
10546
5322
G:=sub<GL(2,GF(127))| [100,0,0,100],[52,53,0,22],[105,53,46,22] >;

D9xC21 in GAP, Magma, Sage, TeX

D_9\times C_{21}
% in TeX

G:=Group("D9xC21");
// GroupNames label

G:=SmallGroup(378,32);
// by ID

G=gap.SmallGroup(378,32);
# by ID

G:=PCGroup([5,-2,-3,-7,-3,-3,4203,138,6304]);
// Polycyclic

G:=Group<a,b,c|a^21=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D9xC21 in TeX

׿
x
:
Z
F
o
wr
Q
<