extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C6xD5) = C3xD5xDic3 | φ: C6xD5/C3xD5 → C2 ⊆ Aut C6 | 60 | 4 | C6.1(C6xD5) | 360,58 |
C6.2(C6xD5) = C3xS3xDic5 | φ: C6xD5/C3xD5 → C2 ⊆ Aut C6 | 120 | 4 | C6.2(C6xD5) | 360,59 |
C6.3(C6xD5) = C3xD30.C2 | φ: C6xD5/C3xD5 → C2 ⊆ Aut C6 | 120 | 4 | C6.3(C6xD5) | 360,60 |
C6.4(C6xD5) = C3xC15:D4 | φ: C6xD5/C3xD5 → C2 ⊆ Aut C6 | 60 | 4 | C6.4(C6xD5) | 360,61 |
C6.5(C6xD5) = C3xC3:D20 | φ: C6xD5/C3xD5 → C2 ⊆ Aut C6 | 60 | 4 | C6.5(C6xD5) | 360,62 |
C6.6(C6xD5) = C3xC5:D12 | φ: C6xD5/C3xD5 → C2 ⊆ Aut C6 | 120 | 4 | C6.6(C6xD5) | 360,63 |
C6.7(C6xD5) = C3xC15:Q8 | φ: C6xD5/C3xD5 → C2 ⊆ Aut C6 | 120 | 4 | C6.7(C6xD5) | 360,64 |
C6.8(C6xD5) = C3xDic30 | φ: C6xD5/C30 → C2 ⊆ Aut C6 | 120 | 2 | C6.8(C6xD5) | 360,100 |
C6.9(C6xD5) = C12xD15 | φ: C6xD5/C30 → C2 ⊆ Aut C6 | 120 | 2 | C6.9(C6xD5) | 360,101 |
C6.10(C6xD5) = C3xD60 | φ: C6xD5/C30 → C2 ⊆ Aut C6 | 120 | 2 | C6.10(C6xD5) | 360,102 |
C6.11(C6xD5) = C6xDic15 | φ: C6xD5/C30 → C2 ⊆ Aut C6 | 120 | | C6.11(C6xD5) | 360,103 |
C6.12(C6xD5) = C3xC15:7D4 | φ: C6xD5/C30 → C2 ⊆ Aut C6 | 60 | 2 | C6.12(C6xD5) | 360,104 |
C6.13(C6xD5) = C9xDic10 | central extension (φ=1) | 360 | 2 | C6.13(C6xD5) | 360,15 |
C6.14(C6xD5) = D5xC36 | central extension (φ=1) | 180 | 2 | C6.14(C6xD5) | 360,16 |
C6.15(C6xD5) = C9xD20 | central extension (φ=1) | 180 | 2 | C6.15(C6xD5) | 360,17 |
C6.16(C6xD5) = C18xDic5 | central extension (φ=1) | 360 | | C6.16(C6xD5) | 360,18 |
C6.17(C6xD5) = C9xC5:D4 | central extension (φ=1) | 180 | 2 | C6.17(C6xD5) | 360,19 |
C6.18(C6xD5) = D5xC2xC18 | central extension (φ=1) | 180 | | C6.18(C6xD5) | 360,47 |
C6.19(C6xD5) = C32xDic10 | central extension (φ=1) | 360 | | C6.19(C6xD5) | 360,90 |
C6.20(C6xD5) = D5xC3xC12 | central extension (φ=1) | 180 | | C6.20(C6xD5) | 360,91 |
C6.21(C6xD5) = C32xD20 | central extension (φ=1) | 180 | | C6.21(C6xD5) | 360,92 |
C6.22(C6xD5) = C3xC6xDic5 | central extension (φ=1) | 360 | | C6.22(C6xD5) | 360,93 |
C6.23(C6xD5) = C32xC5:D4 | central extension (φ=1) | 180 | | C6.23(C6xD5) | 360,94 |