Extensions 1→N→G→Q→1 with N=Dic3×C15 and Q=C2

Direct product G=N×Q with N=Dic3×C15 and Q=C2
dρLabelID
Dic3×C30120Dic3xC30360,98

Semidirect products G=N:Q with N=Dic3×C15 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×C15)⋊1C2 = C3⋊D60φ: C2/C1C2 ⊆ Out Dic3×C15604+(Dic3xC15):1C2360,81
(Dic3×C15)⋊2C2 = Dic3×D15φ: C2/C1C2 ⊆ Out Dic3×C151204-(Dic3xC15):2C2360,77
(Dic3×C15)⋊3C2 = C6.D30φ: C2/C1C2 ⊆ Out Dic3×C15604+(Dic3xC15):3C2360,79
(Dic3×C15)⋊4C2 = C3×C3⋊D20φ: C2/C1C2 ⊆ Out Dic3×C15604(Dic3xC15):4C2360,62
(Dic3×C15)⋊5C2 = C5×C3⋊D12φ: C2/C1C2 ⊆ Out Dic3×C15604(Dic3xC15):5C2360,75
(Dic3×C15)⋊6C2 = C3×D5×Dic3φ: C2/C1C2 ⊆ Out Dic3×C15604(Dic3xC15):6C2360,58
(Dic3×C15)⋊7C2 = C3×D30.C2φ: C2/C1C2 ⊆ Out Dic3×C151204(Dic3xC15):7C2360,60
(Dic3×C15)⋊8C2 = C5×S3×Dic3φ: C2/C1C2 ⊆ Out Dic3×C151204(Dic3xC15):8C2360,72
(Dic3×C15)⋊9C2 = C5×C6.D6φ: C2/C1C2 ⊆ Out Dic3×C15604(Dic3xC15):9C2360,73
(Dic3×C15)⋊10C2 = C15×C3⋊D4φ: C2/C1C2 ⊆ Out Dic3×C15602(Dic3xC15):10C2360,99
(Dic3×C15)⋊11C2 = S3×C60φ: trivial image1202(Dic3xC15):11C2360,96

Non-split extensions G=N.Q with N=Dic3×C15 and Q=C2
extensionφ:Q→Out NdρLabelID
(Dic3×C15).1C2 = C3⋊Dic30φ: C2/C1C2 ⊆ Out Dic3×C151204-(Dic3xC15).1C2360,83
(Dic3×C15).2C2 = C3×C15⋊Q8φ: C2/C1C2 ⊆ Out Dic3×C151204(Dic3xC15).2C2360,64
(Dic3×C15).3C2 = C5×C322Q8φ: C2/C1C2 ⊆ Out Dic3×C151204(Dic3xC15).3C2360,76
(Dic3×C15).4C2 = C15×Dic6φ: C2/C1C2 ⊆ Out Dic3×C151202(Dic3xC15).4C2360,95

׿
×
𝔽