Extensions 1→N→G→Q→1 with N=C180 and Q=C2

Direct product G=N×Q with N=C180 and Q=C2
dρLabelID
C2×C180360C2xC180360,30

Semidirect products G=N:Q with N=C180 and Q=C2
extensionφ:Q→Aut NdρLabelID
C1801C2 = D180φ: C2/C1C2 ⊆ Aut C1801802+C180:1C2360,27
C1802C2 = C4×D45φ: C2/C1C2 ⊆ Aut C1801802C180:2C2360,26
C1803C2 = C5×D36φ: C2/C1C2 ⊆ Aut C1801802C180:3C2360,22
C1804C2 = C9×D20φ: C2/C1C2 ⊆ Aut C1801802C180:4C2360,17
C1805C2 = D9×C20φ: C2/C1C2 ⊆ Aut C1801802C180:5C2360,21
C1806C2 = D5×C36φ: C2/C1C2 ⊆ Aut C1801802C180:6C2360,16
C1807C2 = D4×C45φ: C2/C1C2 ⊆ Aut C1801802C180:7C2360,31

Non-split extensions G=N.Q with N=C180 and Q=C2
extensionφ:Q→Aut NdρLabelID
C180.1C2 = Dic90φ: C2/C1C2 ⊆ Aut C1803602-C180.1C2360,25
C180.2C2 = C453C8φ: C2/C1C2 ⊆ Aut C1803602C180.2C2360,3
C180.3C2 = C5×Dic18φ: C2/C1C2 ⊆ Aut C1803602C180.3C2360,20
C180.4C2 = C9×Dic10φ: C2/C1C2 ⊆ Aut C1803602C180.4C2360,15
C180.5C2 = C5×C9⋊C8φ: C2/C1C2 ⊆ Aut C1803602C180.5C2360,1
C180.6C2 = C9×C52C8φ: C2/C1C2 ⊆ Aut C1803602C180.6C2360,2
C180.7C2 = Q8×C45φ: C2/C1C2 ⊆ Aut C1803602C180.7C2360,32

׿
×
𝔽