extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.1D10 = C45⋊Q8 | φ: D10/D5 → C2 ⊆ Aut C18 | 360 | 4- | C18.1D10 | 360,7 |
C18.2D10 = D9×Dic5 | φ: D10/D5 → C2 ⊆ Aut C18 | 180 | 4- | C18.2D10 | 360,8 |
C18.3D10 = D90.C2 | φ: D10/D5 → C2 ⊆ Aut C18 | 180 | 4+ | C18.3D10 | 360,9 |
C18.4D10 = C5⋊D36 | φ: D10/D5 → C2 ⊆ Aut C18 | 180 | 4+ | C18.4D10 | 360,10 |
C18.5D10 = D5×Dic9 | φ: D10/D5 → C2 ⊆ Aut C18 | 180 | 4- | C18.5D10 | 360,11 |
C18.6D10 = C45⋊D4 | φ: D10/D5 → C2 ⊆ Aut C18 | 180 | 4- | C18.6D10 | 360,12 |
C18.7D10 = C9⋊D20 | φ: D10/D5 → C2 ⊆ Aut C18 | 180 | 4+ | C18.7D10 | 360,13 |
C18.8D10 = Dic90 | φ: D10/C10 → C2 ⊆ Aut C18 | 360 | 2- | C18.8D10 | 360,25 |
C18.9D10 = C4×D45 | φ: D10/C10 → C2 ⊆ Aut C18 | 180 | 2 | C18.9D10 | 360,26 |
C18.10D10 = D180 | φ: D10/C10 → C2 ⊆ Aut C18 | 180 | 2+ | C18.10D10 | 360,27 |
C18.11D10 = C2×Dic45 | φ: D10/C10 → C2 ⊆ Aut C18 | 360 | | C18.11D10 | 360,28 |
C18.12D10 = C45⋊7D4 | φ: D10/C10 → C2 ⊆ Aut C18 | 180 | 2 | C18.12D10 | 360,29 |
C18.13D10 = C9×Dic10 | central extension (φ=1) | 360 | 2 | C18.13D10 | 360,15 |
C18.14D10 = D5×C36 | central extension (φ=1) | 180 | 2 | C18.14D10 | 360,16 |
C18.15D10 = C9×D20 | central extension (φ=1) | 180 | 2 | C18.15D10 | 360,17 |
C18.16D10 = C18×Dic5 | central extension (φ=1) | 360 | | C18.16D10 | 360,18 |
C18.17D10 = C9×C5⋊D4 | central extension (φ=1) | 180 | 2 | C18.17D10 | 360,19 |