metabelian, supersoluble, monomial, A-group
Aliases: C20.11F5, C5⋊D5⋊5C8, C52⋊8(C2×C8), C5⋊2(D5⋊C8), (C5×C20).12C4, C52⋊5C8⋊7C2, C10.21(C2×F5), C4.3(C52⋊C4), C52⋊6C4.22C22, (C2×C5⋊D5).9C4, (C4×C5⋊D5).12C2, C2.1(C2×C52⋊C4), (C5×C10).34(C2×C4), SmallGroup(400,156)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C52 — C5×C10 — C52⋊6C4 — C52⋊5C8 — C20.11F5 |
C52 — C20.11F5 |
Generators and relations for C20.11F5
G = < a,b,c | a20=b5=1, c4=a10, ab=ba, cac-1=a17, cbc-1=b3 >
Subgroups: 412 in 60 conjugacy classes, 20 normal (10 characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C8, C2×C4, D5, C10, C10, C2×C8, Dic5, C20, C20, D10, C52, C5⋊C8, C4×D5, C5⋊D5, C5×C10, D5⋊C8, C52⋊6C4, C5×C20, C2×C5⋊D5, C52⋊5C8, C4×C5⋊D5, C20.11F5
Quotients: C1, C2, C4, C22, C8, C2×C4, C2×C8, F5, C2×F5, D5⋊C8, C52⋊C4, C2×C52⋊C4, C20.11F5
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 9 17 5 13)(2 10 18 6 14)(3 11 19 7 15)(4 12 20 8 16)(21 33 25 37 29)(22 34 26 38 30)(23 35 27 39 31)(24 36 28 40 32)
(1 31 6 36 11 21 16 26)(2 24 15 33 12 34 5 23)(3 37 4 30 13 27 14 40)(7 29 20 38 17 39 10 28)(8 22 9 35 18 32 19 25)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,9,17,5,13)(2,10,18,6,14)(3,11,19,7,15)(4,12,20,8,16)(21,33,25,37,29)(22,34,26,38,30)(23,35,27,39,31)(24,36,28,40,32), (1,31,6,36,11,21,16,26)(2,24,15,33,12,34,5,23)(3,37,4,30,13,27,14,40)(7,29,20,38,17,39,10,28)(8,22,9,35,18,32,19,25)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,9,17,5,13)(2,10,18,6,14)(3,11,19,7,15)(4,12,20,8,16)(21,33,25,37,29)(22,34,26,38,30)(23,35,27,39,31)(24,36,28,40,32), (1,31,6,36,11,21,16,26)(2,24,15,33,12,34,5,23)(3,37,4,30,13,27,14,40)(7,29,20,38,17,39,10,28)(8,22,9,35,18,32,19,25) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,9,17,5,13),(2,10,18,6,14),(3,11,19,7,15),(4,12,20,8,16),(21,33,25,37,29),(22,34,26,38,30),(23,35,27,39,31),(24,36,28,40,32)], [(1,31,6,36,11,21,16,26),(2,24,15,33,12,34,5,23),(3,37,4,30,13,27,14,40),(7,29,20,38,17,39,10,28),(8,22,9,35,18,32,19,25)]])
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 5A | ··· | 5F | 8A | ··· | 8H | 10A | ··· | 10F | 20A | ··· | 20L |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | ··· | 5 | 8 | ··· | 8 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 25 | 25 | 1 | 1 | 25 | 25 | 4 | ··· | 4 | 25 | ··· | 25 | 4 | ··· | 4 | 4 | ··· | 4 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C4 | C4 | C8 | F5 | C2×F5 | D5⋊C8 | C52⋊C4 | C2×C52⋊C4 | C20.11F5 |
kernel | C20.11F5 | C52⋊5C8 | C4×C5⋊D5 | C5×C20 | C2×C5⋊D5 | C5⋊D5 | C20 | C10 | C5 | C4 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 8 | 2 | 2 | 4 | 4 | 4 | 8 |
Matrix representation of C20.11F5 ►in GL5(𝔽41)
32 | 0 | 0 | 0 | 0 |
0 | 34 | 40 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 7 |
0 | 0 | 0 | 34 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 40 | 34 | 0 | 0 |
0 | 7 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 40 | 34 |
3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 34 | 40 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
G:=sub<GL(5,GF(41))| [32,0,0,0,0,0,34,1,0,0,0,40,0,0,0,0,0,0,7,34,0,0,0,7,40],[1,0,0,0,0,0,40,7,0,0,0,34,7,0,0,0,0,0,0,40,0,0,0,1,34],[3,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,34,0,0,0,0,40,0,0] >;
C20.11F5 in GAP, Magma, Sage, TeX
C_{20}._{11}F_5
% in TeX
G:=Group("C20.11F5");
// GroupNames label
G:=SmallGroup(400,156);
// by ID
G=gap.SmallGroup(400,156);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,55,50,1444,496,5765,2897]);
// Polycyclic
G:=Group<a,b,c|a^20=b^5=1,c^4=a^10,a*b=b*a,c*a*c^-1=a^17,c*b*c^-1=b^3>;
// generators/relations