Copied to
clipboard

G = C5×C13⋊C6order 390 = 2·3·5·13

Direct product of C5 and C13⋊C6

direct product, metacyclic, supersoluble, monomial, Z-group

Aliases: C5×C13⋊C6, C13⋊C30, C652C6, D13⋊C15, C13⋊C3⋊C10, (C5×D13)⋊C3, (C5×C13⋊C3)⋊2C2, SmallGroup(390,1)

Series: Derived Chief Lower central Upper central

C1C13 — C5×C13⋊C6
C1C13C65C5×C13⋊C3 — C5×C13⋊C6
C13 — C5×C13⋊C6
C1C5

Generators and relations for C5×C13⋊C6
 G = < a,b,c | a5=b13=c6=1, ab=ba, ac=ca, cbc-1=b10 >

13C2
13C3
13C6
13C10
13C15
13C30

Smallest permutation representation of C5×C13⋊C6
On 65 points
Generators in S65
(1 53 40 27 14)(2 54 41 28 15)(3 55 42 29 16)(4 56 43 30 17)(5 57 44 31 18)(6 58 45 32 19)(7 59 46 33 20)(8 60 47 34 21)(9 61 48 35 22)(10 62 49 36 23)(11 63 50 37 24)(12 64 51 38 25)(13 65 52 39 26)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)
(2 5 4 13 10 11)(3 9 7 12 6 8)(15 18 17 26 23 24)(16 22 20 25 19 21)(28 31 30 39 36 37)(29 35 33 38 32 34)(41 44 43 52 49 50)(42 48 46 51 45 47)(54 57 56 65 62 63)(55 61 59 64 58 60)

G:=sub<Sym(65)| (1,53,40,27,14)(2,54,41,28,15)(3,55,42,29,16)(4,56,43,30,17)(5,57,44,31,18)(6,58,45,32,19)(7,59,46,33,20)(8,60,47,34,21)(9,61,48,35,22)(10,62,49,36,23)(11,63,50,37,24)(12,64,51,38,25)(13,65,52,39,26), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65), (2,5,4,13,10,11)(3,9,7,12,6,8)(15,18,17,26,23,24)(16,22,20,25,19,21)(28,31,30,39,36,37)(29,35,33,38,32,34)(41,44,43,52,49,50)(42,48,46,51,45,47)(54,57,56,65,62,63)(55,61,59,64,58,60)>;

G:=Group( (1,53,40,27,14)(2,54,41,28,15)(3,55,42,29,16)(4,56,43,30,17)(5,57,44,31,18)(6,58,45,32,19)(7,59,46,33,20)(8,60,47,34,21)(9,61,48,35,22)(10,62,49,36,23)(11,63,50,37,24)(12,64,51,38,25)(13,65,52,39,26), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65), (2,5,4,13,10,11)(3,9,7,12,6,8)(15,18,17,26,23,24)(16,22,20,25,19,21)(28,31,30,39,36,37)(29,35,33,38,32,34)(41,44,43,52,49,50)(42,48,46,51,45,47)(54,57,56,65,62,63)(55,61,59,64,58,60) );

G=PermutationGroup([[(1,53,40,27,14),(2,54,41,28,15),(3,55,42,29,16),(4,56,43,30,17),(5,57,44,31,18),(6,58,45,32,19),(7,59,46,33,20),(8,60,47,34,21),(9,61,48,35,22),(10,62,49,36,23),(11,63,50,37,24),(12,64,51,38,25),(13,65,52,39,26)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65)], [(2,5,4,13,10,11),(3,9,7,12,6,8),(15,18,17,26,23,24),(16,22,20,25,19,21),(28,31,30,39,36,37),(29,35,33,38,32,34),(41,44,43,52,49,50),(42,48,46,51,45,47),(54,57,56,65,62,63),(55,61,59,64,58,60)]])

40 conjugacy classes

class 1  2 3A3B5A5B5C5D6A6B10A10B10C10D13A13B15A···15H30A···30H65A···65H
order123355556610101010131315···1530···3065···65
size113131311111313131313136613···1313···136···6

40 irreducible representations

dim1111111166
type+++
imageC1C2C3C5C6C10C15C30C13⋊C6C5×C13⋊C6
kernelC5×C13⋊C6C5×C13⋊C3C5×D13C13⋊C6C65C13⋊C3D13C13C5C1
# reps1124248828

Matrix representation of C5×C13⋊C6 in GL6(𝔽1171)

7000000
0700000
0070000
0007000
0000700
0000070
,
7414297424307401170
7424297424307401170
7414307424307401170
7414297434307401170
7414297424317401170
7414297424307411170
,
117024307404312
431741429742430740
000100
100000
430310860743429740
4297438603104302

G:=sub<GL(6,GF(1171))| [70,0,0,0,0,0,0,70,0,0,0,0,0,0,70,0,0,0,0,0,0,70,0,0,0,0,0,0,70,0,0,0,0,0,0,70],[741,742,741,741,741,741,429,429,430,429,429,429,742,742,742,743,742,742,430,430,430,430,431,430,740,740,740,740,740,741,1170,1170,1170,1170,1170,1170],[1170,431,0,1,430,429,2,741,0,0,310,743,430,429,0,0,860,860,740,742,1,0,743,310,431,430,0,0,429,430,2,740,0,0,740,2] >;

C5×C13⋊C6 in GAP, Magma, Sage, TeX

C_5\times C_{13}\rtimes C_6
% in TeX

G:=Group("C5xC13:C6");
// GroupNames label

G:=SmallGroup(390,1);
// by ID

G=gap.SmallGroup(390,1);
# by ID

G:=PCGroup([4,-2,-3,-5,-13,5763,727]);
// Polycyclic

G:=Group<a,b,c|a^5=b^13=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^10>;
// generators/relations

Export

Subgroup lattice of C5×C13⋊C6 in TeX

׿
×
𝔽