Copied to
clipboard

G = D5×C13⋊C3order 390 = 2·3·5·13

Direct product of D5 and C13⋊C3

direct product, metacyclic, supersoluble, monomial, Z-group

Aliases: D5×C13⋊C3, C653C6, (D5×C13)⋊C3, C132(C3×D5), C5⋊(C2×C13⋊C3), (C5×C13⋊C3)⋊3C2, SmallGroup(390,2)

Series: Derived Chief Lower central Upper central

C1C65 — D5×C13⋊C3
C1C13C65C5×C13⋊C3 — D5×C13⋊C3
C65 — D5×C13⋊C3
C1

Generators and relations for D5×C13⋊C3
 G = < a,b,c,d | a5=b2=c13=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c9 >

5C2
13C3
65C6
13C15
5C26
13C3×D5
5C2×C13⋊C3

Character table of D5×C13⋊C3

 class 123A3B5A5B6A6B13A13B13C13D15A15B15C15D26A26B26C26D65A65B65C65D65E65F65G65H
 size 1513132265653333262626261515151566666666
ρ11111111111111111111111111111    trivial
ρ21-11111-1-111111111-1-1-1-111111111    linear of order 2
ρ311ζ32ζ311ζ3ζ321111ζ3ζ32ζ3ζ32111111111111    linear of order 3
ρ411ζ3ζ3211ζ32ζ31111ζ32ζ3ζ32ζ3111111111111    linear of order 3
ρ51-1ζ32ζ311ζ65ζ61111ζ3ζ32ζ3ζ32-1-1-1-111111111    linear of order 6
ρ61-1ζ3ζ3211ζ6ζ651111ζ32ζ3ζ32ζ3-1-1-1-111111111    linear of order 6
ρ72022-1-5/2-1+5/2002222-1-5/2-1+5/2-1+5/2-1-5/20000-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2    orthogonal lifted from D5
ρ82022-1+5/2-1-5/2002222-1+5/2-1-5/2-1-5/2-1+5/20000-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2    orthogonal lifted from D5
ρ920-1+-3-1--3-1-5/2-1+5/2002222ζ32ζ5332ζ52ζ3ζ543ζ5ζ32ζ5432ζ5ζ3ζ533ζ520000-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2    complex lifted from C3×D5
ρ1020-1--3-1+-3-1+5/2-1-5/2002222ζ3ζ543ζ5ζ32ζ5332ζ52ζ3ζ533ζ52ζ32ζ5432ζ50000-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2    complex lifted from C3×D5
ρ1120-1+-3-1--3-1+5/2-1-5/2002222ζ32ζ5432ζ5ζ3ζ533ζ52ζ32ζ5332ζ52ζ3ζ543ζ50000-1-5/2-1+5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2    complex lifted from C3×D5
ρ1220-1--3-1+-3-1-5/2-1+5/2002222ζ3ζ533ζ52ζ32ζ5432ζ5ζ3ζ543ζ5ζ32ζ5332ζ520000-1+5/2-1-5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2    complex lifted from C3×D5
ρ1333003300ζ13913313ζ136135132ζ13121310134ζ13111381370000ζ1311138137ζ13913313ζ136135132ζ13121310134ζ13121310134ζ13913313ζ136135132ζ13121310134ζ1311138137ζ1311138137ζ13913313ζ136135132    complex lifted from C13⋊C3
ρ1433003300ζ13121310134ζ1311138137ζ13913313ζ1361351320000ζ136135132ζ13121310134ζ1311138137ζ13913313ζ13913313ζ13121310134ζ1311138137ζ13913313ζ136135132ζ136135132ζ13121310134ζ1311138137    complex lifted from C13⋊C3
ρ153-3003300ζ136135132ζ13121310134ζ1311138137ζ13913313000013913313136135132131213101341311138137ζ1311138137ζ136135132ζ13121310134ζ1311138137ζ13913313ζ13913313ζ136135132ζ13121310134    complex lifted from C2×C13⋊C3
ρ163-3003300ζ13913313ζ136135132ζ13121310134ζ1311138137000013111381371391331313613513213121310134ζ13121310134ζ13913313ζ136135132ζ13121310134ζ1311138137ζ1311138137ζ13913313ζ136135132    complex lifted from C2×C13⋊C3
ρ1733003300ζ1311138137ζ13913313ζ136135132ζ131213101340000ζ13121310134ζ1311138137ζ13913313ζ136135132ζ136135132ζ1311138137ζ13913313ζ136135132ζ13121310134ζ13121310134ζ1311138137ζ13913313    complex lifted from C13⋊C3
ρ183-3003300ζ1311138137ζ13913313ζ136135132ζ13121310134000013121310134131113813713913313136135132ζ136135132ζ1311138137ζ13913313ζ136135132ζ13121310134ζ13121310134ζ1311138137ζ13913313    complex lifted from C2×C13⋊C3
ρ1933003300ζ136135132ζ13121310134ζ1311138137ζ139133130000ζ13913313ζ136135132ζ13121310134ζ1311138137ζ1311138137ζ136135132ζ13121310134ζ1311138137ζ13913313ζ13913313ζ136135132ζ13121310134    complex lifted from C13⋊C3
ρ203-3003300ζ13121310134ζ1311138137ζ13913313ζ136135132000013613513213121310134131113813713913313ζ13913313ζ13121310134ζ1311138137ζ13913313ζ136135132ζ136135132ζ13121310134ζ1311138137    complex lifted from C2×C13⋊C3
ρ216000-3-35/2-3+35/200139+2ζ133+2ζ13136+2ζ135+2ζ1321312+2ζ1310+2ζ1341311+2ζ138+2ζ13700000000ζ54ζ131254ζ131054ζ1345ζ13125ζ13105ζ134ζ53ζ13953ζ13353ζ1352ζ13952ζ13352ζ13ζ53ζ13653ζ13553ζ13252ζ13652ζ13552ζ132ζ53ζ131253ζ131053ζ13452ζ131252ζ131052ζ134ζ53ζ131153ζ13853ζ13752ζ131152ζ13852ζ137ζ54ζ131154ζ13854ζ1375ζ13115ζ1385ζ137ζ54ζ13954ζ13354ζ135ζ1395ζ1335ζ13ζ54ζ13654ζ13554ζ1325ζ1365ζ1355ζ132    complex faithful
ρ226000-3+35/2-3-35/200139+2ζ133+2ζ13136+2ζ135+2ζ1321312+2ζ1310+2ζ1341311+2ζ138+2ζ13700000000ζ53ζ131253ζ131053ζ13452ζ131252ζ131052ζ134ζ54ζ13954ζ13354ζ135ζ1395ζ1335ζ13ζ54ζ13654ζ13554ζ1325ζ1365ζ1355ζ132ζ54ζ131254ζ131054ζ1345ζ13125ζ13105ζ134ζ54ζ131154ζ13854ζ1375ζ13115ζ1385ζ137ζ53ζ131153ζ13853ζ13752ζ131152ζ13852ζ137ζ53ζ13953ζ13353ζ1352ζ13952ζ13352ζ13ζ53ζ13653ζ13553ζ13252ζ13652ζ13552ζ132    complex faithful
ρ236000-3+35/2-3-35/200136+2ζ135+2ζ1321312+2ζ1310+2ζ1341311+2ζ138+2ζ137139+2ζ133+2ζ1300000000ζ53ζ131153ζ13853ζ13752ζ131152ζ13852ζ137ζ54ζ13654ζ13554ζ1325ζ1365ζ1355ζ132ζ54ζ131254ζ131054ζ1345ζ13125ζ13105ζ134ζ54ζ131154ζ13854ζ1375ζ13115ζ1385ζ137ζ54ζ13954ζ13354ζ135ζ1395ζ1335ζ13ζ53ζ13953ζ13353ζ1352ζ13952ζ13352ζ13ζ53ζ13653ζ13553ζ13252ζ13652ζ13552ζ132ζ53ζ131253ζ131053ζ13452ζ131252ζ131052ζ134    complex faithful
ρ246000-3-35/2-3+35/2001311+2ζ138+2ζ137139+2ζ133+2ζ13136+2ζ135+2ζ1321312+2ζ1310+2ζ13400000000ζ54ζ13654ζ13554ζ1325ζ1365ζ1355ζ132ζ53ζ131153ζ13853ζ13752ζ131152ζ13852ζ137ζ53ζ13953ζ13353ζ1352ζ13952ζ13352ζ13ζ53ζ13653ζ13553ζ13252ζ13652ζ13552ζ132ζ53ζ131253ζ131053ζ13452ζ131252ζ131052ζ134ζ54ζ131254ζ131054ζ1345ζ13125ζ13105ζ134ζ54ζ131154ζ13854ζ1375ζ13115ζ1385ζ137ζ54ζ13954ζ13354ζ135ζ1395ζ1335ζ13    complex faithful
ρ256000-3+35/2-3-35/2001311+2ζ138+2ζ137139+2ζ133+2ζ13136+2ζ135+2ζ1321312+2ζ1310+2ζ13400000000ζ53ζ13653ζ13553ζ13252ζ13652ζ13552ζ132ζ54ζ131154ζ13854ζ1375ζ13115ζ1385ζ137ζ54ζ13954ζ13354ζ135ζ1395ζ1335ζ13ζ54ζ13654ζ13554ζ1325ζ1365ζ1355ζ132ζ54ζ131254ζ131054ζ1345ζ13125ζ13105ζ134ζ53ζ131253ζ131053ζ13452ζ131252ζ131052ζ134ζ53ζ131153ζ13853ζ13752ζ131152ζ13852ζ137ζ53ζ13953ζ13353ζ1352ζ13952ζ13352ζ13    complex faithful
ρ266000-3+35/2-3-35/2001312+2ζ1310+2ζ1341311+2ζ138+2ζ137139+2ζ133+2ζ13136+2ζ135+2ζ13200000000ζ53ζ13953ζ13353ζ1352ζ13952ζ13352ζ13ζ54ζ131254ζ131054ζ1345ζ13125ζ13105ζ134ζ54ζ131154ζ13854ζ1375ζ13115ζ1385ζ137ζ54ζ13954ζ13354ζ135ζ1395ζ1335ζ13ζ54ζ13654ζ13554ζ1325ζ1365ζ1355ζ132ζ53ζ13653ζ13553ζ13252ζ13652ζ13552ζ132ζ53ζ131253ζ131053ζ13452ζ131252ζ131052ζ134ζ53ζ131153ζ13853ζ13752ζ131152ζ13852ζ137    complex faithful
ρ276000-3-35/2-3+35/200136+2ζ135+2ζ1321312+2ζ1310+2ζ1341311+2ζ138+2ζ137139+2ζ133+2ζ1300000000ζ54ζ131154ζ13854ζ1375ζ13115ζ1385ζ137ζ53ζ13653ζ13553ζ13252ζ13652ζ13552ζ132ζ53ζ131253ζ131053ζ13452ζ131252ζ131052ζ134ζ53ζ131153ζ13853ζ13752ζ131152ζ13852ζ137ζ53ζ13953ζ13353ζ1352ζ13952ζ13352ζ13ζ54ζ13954ζ13354ζ135ζ1395ζ1335ζ13ζ54ζ13654ζ13554ζ1325ζ1365ζ1355ζ132ζ54ζ131254ζ131054ζ1345ζ13125ζ13105ζ134    complex faithful
ρ286000-3-35/2-3+35/2001312+2ζ1310+2ζ1341311+2ζ138+2ζ137139+2ζ133+2ζ13136+2ζ135+2ζ13200000000ζ54ζ13954ζ13354ζ135ζ1395ζ1335ζ13ζ53ζ131253ζ131053ζ13452ζ131252ζ131052ζ134ζ53ζ131153ζ13853ζ13752ζ131152ζ13852ζ137ζ53ζ13953ζ13353ζ1352ζ13952ζ13352ζ13ζ53ζ13653ζ13553ζ13252ζ13652ζ13552ζ132ζ54ζ13654ζ13554ζ1325ζ1365ζ1355ζ132ζ54ζ131254ζ131054ζ1345ζ13125ζ13105ζ134ζ54ζ131154ζ13854ζ1375ζ13115ζ1385ζ137    complex faithful

Smallest permutation representation of D5×C13⋊C3
On 65 points
Generators in S65
(1 53 40 27 14)(2 54 41 28 15)(3 55 42 29 16)(4 56 43 30 17)(5 57 44 31 18)(6 58 45 32 19)(7 59 46 33 20)(8 60 47 34 21)(9 61 48 35 22)(10 62 49 36 23)(11 63 50 37 24)(12 64 51 38 25)(13 65 52 39 26)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(27 53)(28 54)(29 55)(30 56)(31 57)(32 58)(33 59)(34 60)(35 61)(36 62)(37 63)(38 64)(39 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)(54 56 62)(55 59 58)(57 65 63)(60 61 64)

G:=sub<Sym(65)| (1,53,40,27,14)(2,54,41,28,15)(3,55,42,29,16)(4,56,43,30,17)(5,57,44,31,18)(6,58,45,32,19)(7,59,46,33,20)(8,60,47,34,21)(9,61,48,35,22)(10,62,49,36,23)(11,63,50,37,24)(12,64,51,38,25)(13,65,52,39,26), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,65), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64)>;

G:=Group( (1,53,40,27,14)(2,54,41,28,15)(3,55,42,29,16)(4,56,43,30,17)(5,57,44,31,18)(6,58,45,32,19)(7,59,46,33,20)(8,60,47,34,21)(9,61,48,35,22)(10,62,49,36,23)(11,63,50,37,24)(12,64,51,38,25)(13,65,52,39,26), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,65), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64) );

G=PermutationGroup([[(1,53,40,27,14),(2,54,41,28,15),(3,55,42,29,16),(4,56,43,30,17),(5,57,44,31,18),(6,58,45,32,19),(7,59,46,33,20),(8,60,47,34,21),(9,61,48,35,22),(10,62,49,36,23),(11,63,50,37,24),(12,64,51,38,25),(13,65,52,39,26)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(27,53),(28,54),(29,55),(30,56),(31,57),(32,58),(33,59),(34,60),(35,61),(36,62),(37,63),(38,64),(39,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51),(54,56,62),(55,59,58),(57,65,63),(60,61,64)]])

Matrix representation of D5×C13⋊C3 in GL5(𝔽1171)

1247000
1015112000
00100
00010
00001
,
1247000
01170000
00100
00010
00001
,
10000
01000
00727621006
0010339
000120
,
7500000
0750000
00520482890
002568761072
00514630946

G:=sub<GL(5,GF(1171))| [1,1015,0,0,0,247,112,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,247,1170,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,72,1,0,0,0,762,0,1,0,0,1006,339,20],[750,0,0,0,0,0,750,0,0,0,0,0,520,256,514,0,0,482,876,630,0,0,890,1072,946] >;

D5×C13⋊C3 in GAP, Magma, Sage, TeX

D_5\times C_{13}\rtimes C_3
% in TeX

G:=Group("D5xC13:C3");
// GroupNames label

G:=SmallGroup(390,2);
// by ID

G=gap.SmallGroup(390,2);
# by ID

G:=PCGroup([4,-2,-3,-5,-13,290,727]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^13=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^9>;
// generators/relations

Export

Subgroup lattice of D5×C13⋊C3 in TeX
Character table of D5×C13⋊C3 in TeX

׿
×
𝔽