direct product, metacyclic, supersoluble, monomial, Z-group
Aliases: D5×C13⋊C3, C65⋊3C6, (D5×C13)⋊C3, C13⋊2(C3×D5), C5⋊(C2×C13⋊C3), (C5×C13⋊C3)⋊3C2, SmallGroup(390,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C65 — C5×C13⋊C3 — D5×C13⋊C3 |
C65 — D5×C13⋊C3 |
Generators and relations for D5×C13⋊C3
G = < a,b,c,d | a5=b2=c13=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c9 >
Character table of D5×C13⋊C3
class | 1 | 2 | 3A | 3B | 5A | 5B | 6A | 6B | 13A | 13B | 13C | 13D | 15A | 15B | 15C | 15D | 26A | 26B | 26C | 26D | 65A | 65B | 65C | 65D | 65E | 65F | 65G | 65H | |
size | 1 | 5 | 13 | 13 | 2 | 2 | 65 | 65 | 3 | 3 | 3 | 3 | 26 | 26 | 26 | 26 | 15 | 15 | 15 | 15 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ5 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ6 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ7 | 2 | 0 | 2 | 2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 2 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 0 | 2 | 2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 2 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 0 | -1+√-3 | -1-√-3 | -1-√5/2 | -1+√5/2 | 0 | 0 | 2 | 2 | 2 | 2 | ζ32ζ53+ζ32ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ54+ζ32ζ5 | ζ3ζ53+ζ3ζ52 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | complex lifted from C3×D5 |
ρ10 | 2 | 0 | -1-√-3 | -1+√-3 | -1+√5/2 | -1-√5/2 | 0 | 0 | 2 | 2 | 2 | 2 | ζ3ζ54+ζ3ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ53+ζ3ζ52 | ζ32ζ54+ζ32ζ5 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | complex lifted from C3×D5 |
ρ11 | 2 | 0 | -1+√-3 | -1-√-3 | -1+√5/2 | -1-√5/2 | 0 | 0 | 2 | 2 | 2 | 2 | ζ32ζ54+ζ32ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ53+ζ32ζ52 | ζ3ζ54+ζ3ζ5 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | complex lifted from C3×D5 |
ρ12 | 2 | 0 | -1-√-3 | -1+√-3 | -1-√5/2 | -1+√5/2 | 0 | 0 | 2 | 2 | 2 | 2 | ζ3ζ53+ζ3ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ54+ζ3ζ5 | ζ32ζ53+ζ32ζ52 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | complex lifted from C3×D5 |
ρ13 | 3 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | 0 | 0 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | complex lifted from C13⋊C3 |
ρ14 | 3 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | 0 | 0 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | complex lifted from C13⋊C3 |
ρ15 | 3 | -3 | 0 | 0 | 3 | 3 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | 0 | 0 | 0 | 0 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | complex lifted from C2×C13⋊C3 |
ρ16 | 3 | -3 | 0 | 0 | 3 | 3 | 0 | 0 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | 0 | 0 | 0 | 0 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | ζ1312+ζ1310+ζ134 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | complex lifted from C2×C13⋊C3 |
ρ17 | 3 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | 0 | 0 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | complex lifted from C13⋊C3 |
ρ18 | 3 | -3 | 0 | 0 | 3 | 3 | 0 | 0 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | 0 | 0 | 0 | 0 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | -ζ136-ζ135-ζ132 | ζ136+ζ135+ζ132 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | complex lifted from C2×C13⋊C3 |
ρ19 | 3 | 3 | 0 | 0 | 3 | 3 | 0 | 0 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | 0 | 0 | 0 | 0 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ1311+ζ138+ζ137 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | complex lifted from C13⋊C3 |
ρ20 | 3 | -3 | 0 | 0 | 3 | 3 | 0 | 0 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | 0 | 0 | 0 | 0 | -ζ136-ζ135-ζ132 | -ζ1312-ζ1310-ζ134 | -ζ1311-ζ138-ζ137 | -ζ139-ζ133-ζ13 | ζ139+ζ133+ζ13 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | ζ139+ζ133+ζ13 | ζ136+ζ135+ζ132 | ζ136+ζ135+ζ132 | ζ1312+ζ1310+ζ134 | ζ1311+ζ138+ζ137 | complex lifted from C2×C13⋊C3 |
ρ21 | 6 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 2ζ139+2ζ133+2ζ13 | 2ζ136+2ζ135+2ζ132 | 2ζ1312+2ζ1310+2ζ134 | 2ζ1311+2ζ138+2ζ137 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ1312+ζ54ζ1310+ζ54ζ134+ζ5ζ1312+ζ5ζ1310+ζ5ζ134 | ζ53ζ139+ζ53ζ133+ζ53ζ13+ζ52ζ139+ζ52ζ133+ζ52ζ13 | ζ53ζ136+ζ53ζ135+ζ53ζ132+ζ52ζ136+ζ52ζ135+ζ52ζ132 | ζ53ζ1312+ζ53ζ1310+ζ53ζ134+ζ52ζ1312+ζ52ζ1310+ζ52ζ134 | ζ53ζ1311+ζ53ζ138+ζ53ζ137+ζ52ζ1311+ζ52ζ138+ζ52ζ137 | ζ54ζ1311+ζ54ζ138+ζ54ζ137+ζ5ζ1311+ζ5ζ138+ζ5ζ137 | ζ54ζ139+ζ54ζ133+ζ54ζ13+ζ5ζ139+ζ5ζ133+ζ5ζ13 | ζ54ζ136+ζ54ζ135+ζ54ζ132+ζ5ζ136+ζ5ζ135+ζ5ζ132 | complex faithful |
ρ22 | 6 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 2ζ139+2ζ133+2ζ13 | 2ζ136+2ζ135+2ζ132 | 2ζ1312+2ζ1310+2ζ134 | 2ζ1311+2ζ138+2ζ137 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ1312+ζ53ζ1310+ζ53ζ134+ζ52ζ1312+ζ52ζ1310+ζ52ζ134 | ζ54ζ139+ζ54ζ133+ζ54ζ13+ζ5ζ139+ζ5ζ133+ζ5ζ13 | ζ54ζ136+ζ54ζ135+ζ54ζ132+ζ5ζ136+ζ5ζ135+ζ5ζ132 | ζ54ζ1312+ζ54ζ1310+ζ54ζ134+ζ5ζ1312+ζ5ζ1310+ζ5ζ134 | ζ54ζ1311+ζ54ζ138+ζ54ζ137+ζ5ζ1311+ζ5ζ138+ζ5ζ137 | ζ53ζ1311+ζ53ζ138+ζ53ζ137+ζ52ζ1311+ζ52ζ138+ζ52ζ137 | ζ53ζ139+ζ53ζ133+ζ53ζ13+ζ52ζ139+ζ52ζ133+ζ52ζ13 | ζ53ζ136+ζ53ζ135+ζ53ζ132+ζ52ζ136+ζ52ζ135+ζ52ζ132 | complex faithful |
ρ23 | 6 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 2ζ136+2ζ135+2ζ132 | 2ζ1312+2ζ1310+2ζ134 | 2ζ1311+2ζ138+2ζ137 | 2ζ139+2ζ133+2ζ13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ1311+ζ53ζ138+ζ53ζ137+ζ52ζ1311+ζ52ζ138+ζ52ζ137 | ζ54ζ136+ζ54ζ135+ζ54ζ132+ζ5ζ136+ζ5ζ135+ζ5ζ132 | ζ54ζ1312+ζ54ζ1310+ζ54ζ134+ζ5ζ1312+ζ5ζ1310+ζ5ζ134 | ζ54ζ1311+ζ54ζ138+ζ54ζ137+ζ5ζ1311+ζ5ζ138+ζ5ζ137 | ζ54ζ139+ζ54ζ133+ζ54ζ13+ζ5ζ139+ζ5ζ133+ζ5ζ13 | ζ53ζ139+ζ53ζ133+ζ53ζ13+ζ52ζ139+ζ52ζ133+ζ52ζ13 | ζ53ζ136+ζ53ζ135+ζ53ζ132+ζ52ζ136+ζ52ζ135+ζ52ζ132 | ζ53ζ1312+ζ53ζ1310+ζ53ζ134+ζ52ζ1312+ζ52ζ1310+ζ52ζ134 | complex faithful |
ρ24 | 6 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 2ζ1311+2ζ138+2ζ137 | 2ζ139+2ζ133+2ζ13 | 2ζ136+2ζ135+2ζ132 | 2ζ1312+2ζ1310+2ζ134 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ136+ζ54ζ135+ζ54ζ132+ζ5ζ136+ζ5ζ135+ζ5ζ132 | ζ53ζ1311+ζ53ζ138+ζ53ζ137+ζ52ζ1311+ζ52ζ138+ζ52ζ137 | ζ53ζ139+ζ53ζ133+ζ53ζ13+ζ52ζ139+ζ52ζ133+ζ52ζ13 | ζ53ζ136+ζ53ζ135+ζ53ζ132+ζ52ζ136+ζ52ζ135+ζ52ζ132 | ζ53ζ1312+ζ53ζ1310+ζ53ζ134+ζ52ζ1312+ζ52ζ1310+ζ52ζ134 | ζ54ζ1312+ζ54ζ1310+ζ54ζ134+ζ5ζ1312+ζ5ζ1310+ζ5ζ134 | ζ54ζ1311+ζ54ζ138+ζ54ζ137+ζ5ζ1311+ζ5ζ138+ζ5ζ137 | ζ54ζ139+ζ54ζ133+ζ54ζ13+ζ5ζ139+ζ5ζ133+ζ5ζ13 | complex faithful |
ρ25 | 6 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 2ζ1311+2ζ138+2ζ137 | 2ζ139+2ζ133+2ζ13 | 2ζ136+2ζ135+2ζ132 | 2ζ1312+2ζ1310+2ζ134 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ136+ζ53ζ135+ζ53ζ132+ζ52ζ136+ζ52ζ135+ζ52ζ132 | ζ54ζ1311+ζ54ζ138+ζ54ζ137+ζ5ζ1311+ζ5ζ138+ζ5ζ137 | ζ54ζ139+ζ54ζ133+ζ54ζ13+ζ5ζ139+ζ5ζ133+ζ5ζ13 | ζ54ζ136+ζ54ζ135+ζ54ζ132+ζ5ζ136+ζ5ζ135+ζ5ζ132 | ζ54ζ1312+ζ54ζ1310+ζ54ζ134+ζ5ζ1312+ζ5ζ1310+ζ5ζ134 | ζ53ζ1312+ζ53ζ1310+ζ53ζ134+ζ52ζ1312+ζ52ζ1310+ζ52ζ134 | ζ53ζ1311+ζ53ζ138+ζ53ζ137+ζ52ζ1311+ζ52ζ138+ζ52ζ137 | ζ53ζ139+ζ53ζ133+ζ53ζ13+ζ52ζ139+ζ52ζ133+ζ52ζ13 | complex faithful |
ρ26 | 6 | 0 | 0 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 0 | 2ζ1312+2ζ1310+2ζ134 | 2ζ1311+2ζ138+2ζ137 | 2ζ139+2ζ133+2ζ13 | 2ζ136+2ζ135+2ζ132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ53ζ139+ζ53ζ133+ζ53ζ13+ζ52ζ139+ζ52ζ133+ζ52ζ13 | ζ54ζ1312+ζ54ζ1310+ζ54ζ134+ζ5ζ1312+ζ5ζ1310+ζ5ζ134 | ζ54ζ1311+ζ54ζ138+ζ54ζ137+ζ5ζ1311+ζ5ζ138+ζ5ζ137 | ζ54ζ139+ζ54ζ133+ζ54ζ13+ζ5ζ139+ζ5ζ133+ζ5ζ13 | ζ54ζ136+ζ54ζ135+ζ54ζ132+ζ5ζ136+ζ5ζ135+ζ5ζ132 | ζ53ζ136+ζ53ζ135+ζ53ζ132+ζ52ζ136+ζ52ζ135+ζ52ζ132 | ζ53ζ1312+ζ53ζ1310+ζ53ζ134+ζ52ζ1312+ζ52ζ1310+ζ52ζ134 | ζ53ζ1311+ζ53ζ138+ζ53ζ137+ζ52ζ1311+ζ52ζ138+ζ52ζ137 | complex faithful |
ρ27 | 6 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 2ζ136+2ζ135+2ζ132 | 2ζ1312+2ζ1310+2ζ134 | 2ζ1311+2ζ138+2ζ137 | 2ζ139+2ζ133+2ζ13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ1311+ζ54ζ138+ζ54ζ137+ζ5ζ1311+ζ5ζ138+ζ5ζ137 | ζ53ζ136+ζ53ζ135+ζ53ζ132+ζ52ζ136+ζ52ζ135+ζ52ζ132 | ζ53ζ1312+ζ53ζ1310+ζ53ζ134+ζ52ζ1312+ζ52ζ1310+ζ52ζ134 | ζ53ζ1311+ζ53ζ138+ζ53ζ137+ζ52ζ1311+ζ52ζ138+ζ52ζ137 | ζ53ζ139+ζ53ζ133+ζ53ζ13+ζ52ζ139+ζ52ζ133+ζ52ζ13 | ζ54ζ139+ζ54ζ133+ζ54ζ13+ζ5ζ139+ζ5ζ133+ζ5ζ13 | ζ54ζ136+ζ54ζ135+ζ54ζ132+ζ5ζ136+ζ5ζ135+ζ5ζ132 | ζ54ζ1312+ζ54ζ1310+ζ54ζ134+ζ5ζ1312+ζ5ζ1310+ζ5ζ134 | complex faithful |
ρ28 | 6 | 0 | 0 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 0 | 2ζ1312+2ζ1310+2ζ134 | 2ζ1311+2ζ138+2ζ137 | 2ζ139+2ζ133+2ζ13 | 2ζ136+2ζ135+2ζ132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ54ζ139+ζ54ζ133+ζ54ζ13+ζ5ζ139+ζ5ζ133+ζ5ζ13 | ζ53ζ1312+ζ53ζ1310+ζ53ζ134+ζ52ζ1312+ζ52ζ1310+ζ52ζ134 | ζ53ζ1311+ζ53ζ138+ζ53ζ137+ζ52ζ1311+ζ52ζ138+ζ52ζ137 | ζ53ζ139+ζ53ζ133+ζ53ζ13+ζ52ζ139+ζ52ζ133+ζ52ζ13 | ζ53ζ136+ζ53ζ135+ζ53ζ132+ζ52ζ136+ζ52ζ135+ζ52ζ132 | ζ54ζ136+ζ54ζ135+ζ54ζ132+ζ5ζ136+ζ5ζ135+ζ5ζ132 | ζ54ζ1312+ζ54ζ1310+ζ54ζ134+ζ5ζ1312+ζ5ζ1310+ζ5ζ134 | ζ54ζ1311+ζ54ζ138+ζ54ζ137+ζ5ζ1311+ζ5ζ138+ζ5ζ137 | complex faithful |
(1 53 40 27 14)(2 54 41 28 15)(3 55 42 29 16)(4 56 43 30 17)(5 57 44 31 18)(6 58 45 32 19)(7 59 46 33 20)(8 60 47 34 21)(9 61 48 35 22)(10 62 49 36 23)(11 63 50 37 24)(12 64 51 38 25)(13 65 52 39 26)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(27 53)(28 54)(29 55)(30 56)(31 57)(32 58)(33 59)(34 60)(35 61)(36 62)(37 63)(38 64)(39 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)
(2 4 10)(3 7 6)(5 13 11)(8 9 12)(15 17 23)(16 20 19)(18 26 24)(21 22 25)(28 30 36)(29 33 32)(31 39 37)(34 35 38)(41 43 49)(42 46 45)(44 52 50)(47 48 51)(54 56 62)(55 59 58)(57 65 63)(60 61 64)
G:=sub<Sym(65)| (1,53,40,27,14)(2,54,41,28,15)(3,55,42,29,16)(4,56,43,30,17)(5,57,44,31,18)(6,58,45,32,19)(7,59,46,33,20)(8,60,47,34,21)(9,61,48,35,22)(10,62,49,36,23)(11,63,50,37,24)(12,64,51,38,25)(13,65,52,39,26), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,65), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64)>;
G:=Group( (1,53,40,27,14)(2,54,41,28,15)(3,55,42,29,16)(4,56,43,30,17)(5,57,44,31,18)(6,58,45,32,19)(7,59,46,33,20)(8,60,47,34,21)(9,61,48,35,22)(10,62,49,36,23)(11,63,50,37,24)(12,64,51,38,25)(13,65,52,39,26), (1,14)(2,15)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,65), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65), (2,4,10)(3,7,6)(5,13,11)(8,9,12)(15,17,23)(16,20,19)(18,26,24)(21,22,25)(28,30,36)(29,33,32)(31,39,37)(34,35,38)(41,43,49)(42,46,45)(44,52,50)(47,48,51)(54,56,62)(55,59,58)(57,65,63)(60,61,64) );
G=PermutationGroup([[(1,53,40,27,14),(2,54,41,28,15),(3,55,42,29,16),(4,56,43,30,17),(5,57,44,31,18),(6,58,45,32,19),(7,59,46,33,20),(8,60,47,34,21),(9,61,48,35,22),(10,62,49,36,23),(11,63,50,37,24),(12,64,51,38,25),(13,65,52,39,26)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(27,53),(28,54),(29,55),(30,56),(31,57),(32,58),(33,59),(34,60),(35,61),(36,62),(37,63),(38,64),(39,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65)], [(2,4,10),(3,7,6),(5,13,11),(8,9,12),(15,17,23),(16,20,19),(18,26,24),(21,22,25),(28,30,36),(29,33,32),(31,39,37),(34,35,38),(41,43,49),(42,46,45),(44,52,50),(47,48,51),(54,56,62),(55,59,58),(57,65,63),(60,61,64)]])
Matrix representation of D5×C13⋊C3 ►in GL5(𝔽1171)
1 | 247 | 0 | 0 | 0 |
1015 | 112 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 247 | 0 | 0 | 0 |
0 | 1170 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 762 | 1006 |
0 | 0 | 1 | 0 | 339 |
0 | 0 | 0 | 1 | 20 |
750 | 0 | 0 | 0 | 0 |
0 | 750 | 0 | 0 | 0 |
0 | 0 | 520 | 482 | 890 |
0 | 0 | 256 | 876 | 1072 |
0 | 0 | 514 | 630 | 946 |
G:=sub<GL(5,GF(1171))| [1,1015,0,0,0,247,112,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,247,1170,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,72,1,0,0,0,762,0,1,0,0,1006,339,20],[750,0,0,0,0,0,750,0,0,0,0,0,520,256,514,0,0,482,876,630,0,0,890,1072,946] >;
D5×C13⋊C3 in GAP, Magma, Sage, TeX
D_5\times C_{13}\rtimes C_3
% in TeX
G:=Group("D5xC13:C3");
// GroupNames label
G:=SmallGroup(390,2);
// by ID
G=gap.SmallGroup(390,2);
# by ID
G:=PCGroup([4,-2,-3,-5,-13,290,727]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^13=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^9>;
// generators/relations
Export
Subgroup lattice of D5×C13⋊C3 in TeX
Character table of D5×C13⋊C3 in TeX