Extensions 1→N→G→Q→1 with N=D5×C20 and Q=C2

Direct product G=N×Q with N=D5×C20 and Q=C2
dρLabelID
D5×C2×C2080D5xC2xC20400,182

Semidirect products G=N:Q with N=D5×C20 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C20)⋊1C2 = D10.9D10φ: C2/C1C2 ⊆ Out D5×C20404(D5xC20):1C2400,167
(D5×C20)⋊2C2 = D205D5φ: C2/C1C2 ⊆ Out D5×C20804-(D5xC20):2C2400,164
(D5×C20)⋊3C2 = Dic105D5φ: C2/C1C2 ⊆ Out D5×C20404+(D5xC20):3C2400,168
(D5×C20)⋊4C2 = D5×D20φ: C2/C1C2 ⊆ Out D5×C20404+(D5xC20):4C2400,170
(D5×C20)⋊5C2 = C5×D4×D5φ: C2/C1C2 ⊆ Out D5×C20404(D5xC20):5C2400,185
(D5×C20)⋊6C2 = C5×D42D5φ: C2/C1C2 ⊆ Out D5×C20404(D5xC20):6C2400,186
(D5×C20)⋊7C2 = C5×Q82D5φ: C2/C1C2 ⊆ Out D5×C20804(D5xC20):7C2400,188
(D5×C20)⋊8C2 = C4×D52φ: C2/C1C2 ⊆ Out D5×C20404(D5xC20):8C2400,169
(D5×C20)⋊9C2 = C5×C4○D20φ: C2/C1C2 ⊆ Out D5×C20402(D5xC20):9C2400,184

Non-split extensions G=N.Q with N=D5×C20 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5×C20).1C2 = C20.30D10φ: C2/C1C2 ⊆ Out D5×C20804(D5xC20).1C2400,62
(D5×C20).2C2 = C20.12F5φ: C2/C1C2 ⊆ Out D5×C20804(D5xC20).2C2400,143
(D5×C20).3C2 = C205F5φ: C2/C1C2 ⊆ Out D5×C20804(D5xC20).3C2400,145
(D5×C20).4C2 = D5×Dic10φ: C2/C1C2 ⊆ Out D5×C20804-(D5xC20).4C2400,163
(D5×C20).5C2 = C5×Q8×D5φ: C2/C1C2 ⊆ Out D5×C20804(D5xC20).5C2400,187
(D5×C20).6C2 = D5×C52C8φ: C2/C1C2 ⊆ Out D5×C20804(D5xC20).6C2400,60
(D5×C20).7C2 = C5×C8⋊D5φ: C2/C1C2 ⊆ Out D5×C20802(D5xC20).7C2400,77
(D5×C20).8C2 = C5×C4.F5φ: C2/C1C2 ⊆ Out D5×C20804(D5xC20).8C2400,136
(D5×C20).9C2 = C5×C4⋊F5φ: C2/C1C2 ⊆ Out D5×C20804(D5xC20).9C2400,138
(D5×C20).10C2 = C5×D5⋊C8φ: C2/C1C2 ⊆ Out D5×C20804(D5xC20).10C2400,135
(D5×C20).11C2 = C20×F5φ: C2/C1C2 ⊆ Out D5×C20804(D5xC20).11C2400,137
(D5×C20).12C2 = C20.14F5φ: C2/C1C2 ⊆ Out D5×C20804(D5xC20).12C2400,142
(D5×C20).13C2 = C4×D5.D5φ: C2/C1C2 ⊆ Out D5×C20804(D5xC20).13C2400,144
(D5×C20).14C2 = D5×C40φ: trivial image802(D5xC20).14C2400,76

׿
×
𝔽