Copied to
clipboard

G = D5xC40order 400 = 24·52

Direct product of C40 and D5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: D5xC40, C40:3C10, D10.4C20, C20.64D10, Dic5.4C20, C5:3(C2xC40), (C5xC40):5C2, C5:2C8:6C10, C52:15(C2xC8), C2.1(D5xC20), C10.8(C2xC20), (C4xD5).7C10, C4.12(D5xC10), C10.28(C4xD5), C20.13(C2xC10), (D5xC20).14C2, (D5xC10).12C4, (C5xC20).42C22, (C5xDic5).12C4, (C5xC5:2C8):13C2, (C5xC10).50(C2xC4), SmallGroup(400,76)

Series: Derived Chief Lower central Upper central

C1C5 — D5xC40
C1C5C10C20C5xC20D5xC20 — D5xC40
C5 — D5xC40
C1C40

Generators and relations for D5xC40
 G = < a,b,c | a40=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 116 in 52 conjugacy classes, 30 normal (26 characteristic)
Quotients: C1, C2, C4, C22, C5, C8, C2xC4, D5, C10, C2xC8, C20, D10, C2xC10, C40, C4xD5, C2xC20, C5xD5, C8xD5, C2xC40, D5xC10, D5xC20, D5xC40
5C2
5C2
2C5
2C5
5C22
5C4
2C10
2C10
5C10
5C10
5C8
5C2xC4
2C20
2C20
5C2xC10
5C20
5C2xC8
2C40
2C40
5C40
5C2xC20
5C2xC40

Smallest permutation representation of D5xC40
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 33 25 17 9)(2 34 26 18 10)(3 35 27 19 11)(4 36 28 20 12)(5 37 29 21 13)(6 38 30 22 14)(7 39 31 23 15)(8 40 32 24 16)(41 49 57 65 73)(42 50 58 66 74)(43 51 59 67 75)(44 52 60 68 76)(45 53 61 69 77)(46 54 62 70 78)(47 55 63 71 79)(48 56 64 72 80)
(1 79)(2 80)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 63)(26 64)(27 65)(28 66)(29 67)(30 68)(31 69)(32 70)(33 71)(34 72)(35 73)(36 74)(37 75)(38 76)(39 77)(40 78)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,33,25,17,9)(2,34,26,18,10)(3,35,27,19,11)(4,36,28,20,12)(5,37,29,21,13)(6,38,30,22,14)(7,39,31,23,15)(8,40,32,24,16)(41,49,57,65,73)(42,50,58,66,74)(43,51,59,67,75)(44,52,60,68,76)(45,53,61,69,77)(46,54,62,70,78)(47,55,63,71,79)(48,56,64,72,80), (1,79)(2,80)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,33,25,17,9)(2,34,26,18,10)(3,35,27,19,11)(4,36,28,20,12)(5,37,29,21,13)(6,38,30,22,14)(7,39,31,23,15)(8,40,32,24,16)(41,49,57,65,73)(42,50,58,66,74)(43,51,59,67,75)(44,52,60,68,76)(45,53,61,69,77)(46,54,62,70,78)(47,55,63,71,79)(48,56,64,72,80), (1,79)(2,80)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,67)(30,68)(31,69)(32,70)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,33,25,17,9),(2,34,26,18,10),(3,35,27,19,11),(4,36,28,20,12),(5,37,29,21,13),(6,38,30,22,14),(7,39,31,23,15),(8,40,32,24,16),(41,49,57,65,73),(42,50,58,66,74),(43,51,59,67,75),(44,52,60,68,76),(45,53,61,69,77),(46,54,62,70,78),(47,55,63,71,79),(48,56,64,72,80)], [(1,79),(2,80),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,63),(26,64),(27,65),(28,66),(29,67),(30,68),(31,69),(32,70),(33,71),(34,72),(35,73),(36,74),(37,75),(38,76),(39,77),(40,78)]])

160 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B5C5D5E···5N8A8B8C8D8E8F8G8H10A10B10C10D10E···10N10O···10V20A···20H20I···20AB20AC···20AJ40A···40P40Q···40BD40BE···40BT
order1222444455555···5888888881010101010···1010···1020···2020···2020···2040···4040···4040···40
size1155115511112···21111555511112···25···51···12···25···51···12···25···5

160 irreducible representations

dim1111111111111122222222
type++++++
imageC1C2C2C2C4C4C5C8C10C10C10C20C20C40D5D10C4xD5C5xD5C8xD5D5xC10D5xC20D5xC40
kernelD5xC40C5xC5:2C8C5xC40D5xC20C5xDic5D5xC10C8xD5C5xD5C5:2C8C40C4xD5Dic5D10D5C40C20C10C8C5C4C2C1
# reps1111224844488322248881632

Matrix representation of D5xC40 in GL2(F41) generated by

130
013
,
370
3010
,
319
3010
G:=sub<GL(2,GF(41))| [13,0,0,13],[37,30,0,10],[31,30,9,10] >;

D5xC40 in GAP, Magma, Sage, TeX

D_5\times C_{40}
% in TeX

G:=Group("D5xC40");
// GroupNames label

G:=SmallGroup(400,76);
// by ID

G=gap.SmallGroup(400,76);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-2,-5,127,69,11525]);
// Polycyclic

G:=Group<a,b,c|a^40=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D5xC40 in TeX

׿
x
:
Z
F
o
wr
Q
<