Extensions 1→N→G→Q→1 with N=C7×Dic7 and Q=C2

Direct product G=N×Q with N=C7×Dic7 and Q=C2
dρLabelID
C14×Dic756C14xDic7392,26

Semidirect products G=N:Q with N=C7×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×Dic7)⋊1C2 = C7⋊D28φ: C2/C1C2 ⊆ Out C7×Dic7284+(C7xDic7):1C2392,21
(C7×Dic7)⋊2C2 = D7×Dic7φ: C2/C1C2 ⊆ Out C7×Dic7564-(C7xDic7):2C2392,18
(C7×Dic7)⋊3C2 = Dic72D7φ: C2/C1C2 ⊆ Out C7×Dic7284+(C7xDic7):3C2392,19
(C7×Dic7)⋊4C2 = C7×C7⋊D4φ: C2/C1C2 ⊆ Out C7×Dic7282(C7xDic7):4C2392,27
(C7×Dic7)⋊5C2 = D7×C28φ: trivial image562(C7xDic7):5C2392,24

Non-split extensions G=N.Q with N=C7×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C7×Dic7).1C2 = C722Q8φ: C2/C1C2 ⊆ Out C7×Dic7564-(C7xDic7).1C2392,22
(C7×Dic7).2C2 = C7×Dic14φ: C2/C1C2 ⊆ Out C7×Dic7562(C7xDic7).2C2392,23

׿
×
𝔽