direct product, metacyclic, supersoluble, monomial
Aliases: C7×Dic14, C72⋊3Q8, C28.7D7, C28.1C14, Dic7.C14, C14.17D14, C7⋊(C7×Q8), C4.(C7×D7), (C7×C28).2C2, C2.3(D7×C14), C14.1(C2×C14), (C7×C14).6C22, (C7×Dic7).2C2, SmallGroup(392,23)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C7×Dic14
G = < a,b,c | a7=b28=1, c2=b14, ab=ba, ac=ca, cbc-1=b-1 >
(1 5 9 13 17 21 25)(2 6 10 14 18 22 26)(3 7 11 15 19 23 27)(4 8 12 16 20 24 28)(29 53 49 45 41 37 33)(30 54 50 46 42 38 34)(31 55 51 47 43 39 35)(32 56 52 48 44 40 36)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 50 15 36)(2 49 16 35)(3 48 17 34)(4 47 18 33)(5 46 19 32)(6 45 20 31)(7 44 21 30)(8 43 22 29)(9 42 23 56)(10 41 24 55)(11 40 25 54)(12 39 26 53)(13 38 27 52)(14 37 28 51)
G:=sub<Sym(56)| (1,5,9,13,17,21,25)(2,6,10,14,18,22,26)(3,7,11,15,19,23,27)(4,8,12,16,20,24,28)(29,53,49,45,41,37,33)(30,54,50,46,42,38,34)(31,55,51,47,43,39,35)(32,56,52,48,44,40,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,50,15,36)(2,49,16,35)(3,48,17,34)(4,47,18,33)(5,46,19,32)(6,45,20,31)(7,44,21,30)(8,43,22,29)(9,42,23,56)(10,41,24,55)(11,40,25,54)(12,39,26,53)(13,38,27,52)(14,37,28,51)>;
G:=Group( (1,5,9,13,17,21,25)(2,6,10,14,18,22,26)(3,7,11,15,19,23,27)(4,8,12,16,20,24,28)(29,53,49,45,41,37,33)(30,54,50,46,42,38,34)(31,55,51,47,43,39,35)(32,56,52,48,44,40,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,50,15,36)(2,49,16,35)(3,48,17,34)(4,47,18,33)(5,46,19,32)(6,45,20,31)(7,44,21,30)(8,43,22,29)(9,42,23,56)(10,41,24,55)(11,40,25,54)(12,39,26,53)(13,38,27,52)(14,37,28,51) );
G=PermutationGroup([[(1,5,9,13,17,21,25),(2,6,10,14,18,22,26),(3,7,11,15,19,23,27),(4,8,12,16,20,24,28),(29,53,49,45,41,37,33),(30,54,50,46,42,38,34),(31,55,51,47,43,39,35),(32,56,52,48,44,40,36)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,50,15,36),(2,49,16,35),(3,48,17,34),(4,47,18,33),(5,46,19,32),(6,45,20,31),(7,44,21,30),(8,43,22,29),(9,42,23,56),(10,41,24,55),(11,40,25,54),(12,39,26,53),(13,38,27,52),(14,37,28,51)]])
119 conjugacy classes
class | 1 | 2 | 4A | 4B | 4C | 7A | ··· | 7F | 7G | ··· | 7AA | 14A | ··· | 14F | 14G | ··· | 14AA | 28A | ··· | 28AV | 28AW | ··· | 28BH |
order | 1 | 2 | 4 | 4 | 4 | 7 | ··· | 7 | 7 | ··· | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 14 | 14 | 1 | ··· | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 14 | ··· | 14 |
119 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | - | + | + | - | |||||||
image | C1 | C2 | C2 | C7 | C14 | C14 | Q8 | D7 | D14 | Dic14 | C7×Q8 | C7×D7 | D7×C14 | C7×Dic14 |
kernel | C7×Dic14 | C7×Dic7 | C7×C28 | Dic14 | Dic7 | C28 | C72 | C28 | C14 | C7 | C7 | C4 | C2 | C1 |
# reps | 1 | 2 | 1 | 6 | 12 | 6 | 1 | 3 | 3 | 6 | 6 | 18 | 18 | 36 |
Matrix representation of C7×Dic14 ►in GL2(𝔽29) generated by
7 | 0 |
0 | 7 |
21 | 0 |
0 | 18 |
0 | 1 |
28 | 0 |
G:=sub<GL(2,GF(29))| [7,0,0,7],[21,0,0,18],[0,28,1,0] >;
C7×Dic14 in GAP, Magma, Sage, TeX
C_7\times {\rm Dic}_{14}
% in TeX
G:=Group("C7xDic14");
// GroupNames label
G:=SmallGroup(392,23);
// by ID
G=gap.SmallGroup(392,23);
# by ID
G:=PCGroup([5,-2,-2,-7,-2,-7,140,301,146,8404]);
// Polycyclic
G:=Group<a,b,c|a^7=b^28=1,c^2=b^14,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export