metabelian, supersoluble, monomial, A-group
Aliases: Dic7⋊2D7, C14.2D14, C2.2D72, C7⋊D7⋊1C4, C7⋊1(C4×D7), C72⋊3(C2×C4), (C7×Dic7)⋊3C2, (C7×C14).2C22, (C2×C7⋊D7).1C2, SmallGroup(392,19)
Series: Derived ►Chief ►Lower central ►Upper central
C72 — Dic7⋊2D7 |
Generators and relations for Dic7⋊2D7
G = < a,b,c,d | a14=c7=d2=1, b2=a7, bab-1=dad=a-1, ac=ca, bc=cb, bd=db, dcd=c-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)
(1 22 8 15)(2 21 9 28)(3 20 10 27)(4 19 11 26)(5 18 12 25)(6 17 13 24)(7 16 14 23)
(1 3 5 7 9 11 13)(2 4 6 8 10 12 14)(15 27 25 23 21 19 17)(16 28 26 24 22 20 18)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(15 17)(18 28)(19 27)(20 26)(21 25)(22 24)
G:=sub<Sym(28)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,22,8,15)(2,21,9,28)(3,20,10,27)(4,19,11,26)(5,18,12,25)(6,17,13,24)(7,16,14,23), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14)(15,27,25,23,21,19,17)(16,28,26,24,22,20,18), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(15,17)(18,28)(19,27)(20,26)(21,25)(22,24)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,22,8,15)(2,21,9,28)(3,20,10,27)(4,19,11,26)(5,18,12,25)(6,17,13,24)(7,16,14,23), (1,3,5,7,9,11,13)(2,4,6,8,10,12,14)(15,27,25,23,21,19,17)(16,28,26,24,22,20,18), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(15,17)(18,28)(19,27)(20,26)(21,25)(22,24) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28)], [(1,22,8,15),(2,21,9,28),(3,20,10,27),(4,19,11,26),(5,18,12,25),(6,17,13,24),(7,16,14,23)], [(1,3,5,7,9,11,13),(2,4,6,8,10,12,14),(15,27,25,23,21,19,17),(16,28,26,24,22,20,18)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(15,17),(18,28),(19,27),(20,26),(21,25),(22,24)]])
G:=TransitiveGroup(28,51);
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 7A | ··· | 7F | 7G | ··· | 7O | 14A | ··· | 14F | 14G | ··· | 14O | 28A | ··· | 28L |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 7 | ··· | 7 | 7 | ··· | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 49 | 49 | 7 | 7 | 7 | 7 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 14 | ··· | 14 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C4 | D7 | D14 | C4×D7 | D72 | Dic7⋊2D7 |
kernel | Dic7⋊2D7 | C7×Dic7 | C2×C7⋊D7 | C7⋊D7 | Dic7 | C14 | C7 | C2 | C1 |
# reps | 1 | 2 | 1 | 4 | 6 | 6 | 12 | 9 | 9 |
Matrix representation of Dic7⋊2D7 ►in GL4(𝔽29) generated by
28 | 1 | 0 | 0 |
20 | 8 | 0 | 0 |
0 | 0 | 28 | 0 |
0 | 0 | 0 | 28 |
21 | 1 | 0 | 0 |
24 | 8 | 0 | 0 |
0 | 0 | 17 | 0 |
0 | 0 | 0 | 17 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 21 | 7 |
0 | 0 | 24 | 26 |
8 | 28 | 0 | 0 |
5 | 21 | 0 | 0 |
0 | 0 | 1 | 28 |
0 | 0 | 0 | 28 |
G:=sub<GL(4,GF(29))| [28,20,0,0,1,8,0,0,0,0,28,0,0,0,0,28],[21,24,0,0,1,8,0,0,0,0,17,0,0,0,0,17],[1,0,0,0,0,1,0,0,0,0,21,24,0,0,7,26],[8,5,0,0,28,21,0,0,0,0,1,0,0,0,28,28] >;
Dic7⋊2D7 in GAP, Magma, Sage, TeX
{\rm Dic}_7\rtimes_2D_7
% in TeX
G:=Group("Dic7:2D7");
// GroupNames label
G:=SmallGroup(392,19);
// by ID
G=gap.SmallGroup(392,19);
# by ID
G:=PCGroup([5,-2,-2,-2,-7,-7,20,26,488,8404]);
// Polycyclic
G:=Group<a,b,c,d|a^14=c^7=d^2=1,b^2=a^7,b*a*b^-1=d*a*d=a^-1,a*c=c*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export