Copied to
clipboard

G = C2×C41⋊C5order 410 = 2·5·41

Direct product of C2 and C41⋊C5

direct product, metacyclic, supersoluble, monomial, Z-group, 5-hyperelementary

Aliases: C2×C41⋊C5, C82⋊C5, C412C10, SmallGroup(410,2)

Series: Derived Chief Lower central Upper central

C1C41 — C2×C41⋊C5
C1C41C41⋊C5 — C2×C41⋊C5
C41 — C2×C41⋊C5
C1C2

Generators and relations for C2×C41⋊C5
 G = < a,b,c | a2=b41=c5=1, ab=ba, ac=ca, cbc-1=b37 >

41C5
41C10

Character table of C2×C41⋊C5

 class 125A5B5C5D10A10B10C10D41A41B41C41D41E41F41G41H82A82B82C82D82E82F82G82H
 size 1141414141414141415555555555555555
ρ111111111111111111111111111    trivial
ρ21-11111-1-1-1-111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ311ζ5ζ54ζ53ζ52ζ5ζ54ζ53ζ521111111111111111    linear of order 5
ρ411ζ53ζ52ζ54ζ5ζ53ζ52ζ54ζ51111111111111111    linear of order 5
ρ511ζ54ζ5ζ52ζ53ζ54ζ5ζ52ζ531111111111111111    linear of order 5
ρ61-1ζ52ζ53ζ5ζ54525355411111111-1-1-1-1-1-1-1-1    linear of order 10
ρ71-1ζ5ζ54ζ53ζ52554535211111111-1-1-1-1-1-1-1-1    linear of order 10
ρ81-1ζ53ζ52ζ54ζ5535254511111111-1-1-1-1-1-1-1-1    linear of order 10
ρ911ζ52ζ53ζ5ζ54ζ52ζ53ζ5ζ541111111111111111    linear of order 5
ρ101-1ζ54ζ5ζ52ζ53545525311111111-1-1-1-1-1-1-1-1    linear of order 10
ρ115-500000000ζ41384134412841124111ζ413041294113417413ζ4136413341324120412ζ4126411941174114416ζ4140413141254123414ζ41394121419418415ζ413741184116411041ζ41354127412441224115413041294113417413413641334132412041241404131412541234144139412141941841541264119411741144164138413441284112411141374118411641104141354127412441224115    complex faithful
ρ125500000000ζ413041294113417413ζ41384134412841124111ζ41394121419418415ζ41354127412441224115ζ413741184116411041ζ4136413341324120412ζ4140413141254123414ζ4126411941174114416ζ41384134412841124111ζ41394121419418415ζ413741184116411041ζ4136413341324120412ζ41354127412441224115ζ413041294113417413ζ4140413141254123414ζ4126411941174114416    complex lifted from C41⋊C5
ρ135-500000000ζ4126411941174114416ζ41354127412441224115ζ413741184116411041ζ413041294113417413ζ4136413341324120412ζ4140413141254123414ζ41394121419418415ζ41384134412841124111413541274124412241154137411841164110414136413341324120412414041314125412341441304129411341741341264119411741144164139412141941841541384134412841124111    complex faithful
ρ145500000000ζ41354127412441224115ζ4126411941174114416ζ4140413141254123414ζ41384134412841124111ζ41394121419418415ζ413741184116411041ζ4136413341324120412ζ413041294113417413ζ4126411941174114416ζ4140413141254123414ζ41394121419418415ζ413741184116411041ζ41384134412841124111ζ41354127412441224115ζ4136413341324120412ζ413041294113417413    complex lifted from C41⋊C5
ρ155-500000000ζ413041294113417413ζ41384134412841124111ζ41394121419418415ζ41354127412441224115ζ413741184116411041ζ4136413341324120412ζ4140413141254123414ζ4126411941174114416413841344128411241114139412141941841541374118411641104141364133413241204124135412741244122411541304129411341741341404131412541234144126411941174114416    complex faithful
ρ165500000000ζ4140413141254123414ζ413741184116411041ζ41384134412841124111ζ4136413341324120412ζ41354127412441224115ζ413041294113417413ζ4126411941174114416ζ41394121419418415ζ413741184116411041ζ41384134412841124111ζ41354127412441224115ζ413041294113417413ζ4136413341324120412ζ4140413141254123414ζ4126411941174114416ζ41394121419418415    complex lifted from C41⋊C5
ρ175-500000000ζ4136413341324120412ζ41394121419418415ζ4126411941174114416ζ413741184116411041ζ41384134412841124111ζ41354127412441224115ζ413041294113417413ζ4140413141254123414413941214194184154126411941174114416413841344128411241114135412741244122411541374118411641104141364133413241204124130412941134174134140413141254123414    complex faithful
ρ185500000000ζ41394121419418415ζ4136413341324120412ζ41354127412441224115ζ4140413141254123414ζ413041294113417413ζ4126411941174114416ζ41384134412841124111ζ413741184116411041ζ4136413341324120412ζ41354127412441224115ζ413041294113417413ζ4126411941174114416ζ4140413141254123414ζ41394121419418415ζ41384134412841124111ζ413741184116411041    complex lifted from C41⋊C5
ρ195-500000000ζ4140413141254123414ζ413741184116411041ζ41384134412841124111ζ4136413341324120412ζ41354127412441224115ζ413041294113417413ζ4126411941174114416ζ41394121419418415413741184116411041413841344128411241114135412741244122411541304129411341741341364133413241204124140413141254123414412641194117411441641394121419418415    complex faithful
ρ205500000000ζ4126411941174114416ζ41354127412441224115ζ413741184116411041ζ413041294113417413ζ4136413341324120412ζ4140413141254123414ζ41394121419418415ζ41384134412841124111ζ41354127412441224115ζ413741184116411041ζ4136413341324120412ζ4140413141254123414ζ413041294113417413ζ4126411941174114416ζ41394121419418415ζ41384134412841124111    complex lifted from C41⋊C5
ρ215500000000ζ4136413341324120412ζ41394121419418415ζ4126411941174114416ζ413741184116411041ζ41384134412841124111ζ41354127412441224115ζ413041294113417413ζ4140413141254123414ζ41394121419418415ζ4126411941174114416ζ41384134412841124111ζ41354127412441224115ζ413741184116411041ζ4136413341324120412ζ413041294113417413ζ4140413141254123414    complex lifted from C41⋊C5
ρ225-500000000ζ41354127412441224115ζ4126411941174114416ζ4140413141254123414ζ41384134412841124111ζ41394121419418415ζ413741184116411041ζ4136413341324120412ζ413041294113417413412641194117411441641404131412541234144139412141941841541374118411641104141384134412841124111413541274124412241154136413341324120412413041294113417413    complex faithful
ρ235500000000ζ413741184116411041ζ4140413141254123414ζ413041294113417413ζ41394121419418415ζ4126411941174114416ζ41384134412841124111ζ41354127412441224115ζ4136413341324120412ζ4140413141254123414ζ413041294113417413ζ4126411941174114416ζ41384134412841124111ζ41394121419418415ζ413741184116411041ζ41354127412441224115ζ4136413341324120412    complex lifted from C41⋊C5
ρ245-500000000ζ41394121419418415ζ4136413341324120412ζ41354127412441224115ζ4140413141254123414ζ413041294113417413ζ4126411941174114416ζ41384134412841124111ζ413741184116411041413641334132412041241354127412441224115413041294113417413412641194117411441641404131412541234144139412141941841541384134412841124111413741184116411041    complex faithful
ρ255500000000ζ41384134412841124111ζ413041294113417413ζ4136413341324120412ζ4126411941174114416ζ4140413141254123414ζ41394121419418415ζ413741184116411041ζ41354127412441224115ζ413041294113417413ζ4136413341324120412ζ4140413141254123414ζ41394121419418415ζ4126411941174114416ζ41384134412841124111ζ413741184116411041ζ41354127412441224115    complex lifted from C41⋊C5
ρ265-500000000ζ413741184116411041ζ4140413141254123414ζ413041294113417413ζ41394121419418415ζ4126411941174114416ζ41384134412841124111ζ41354127412441224115ζ4136413341324120412414041314125412341441304129411341741341264119411741144164138413441284112411141394121419418415413741184116411041413541274124412241154136413341324120412    complex faithful

Smallest permutation representation of C2×C41⋊C5
On 82 points
Generators in S82
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 49)(9 50)(10 51)(11 52)(12 53)(13 54)(14 55)(15 56)(16 57)(17 58)(18 59)(19 60)(20 61)(21 62)(22 63)(23 64)(24 65)(25 66)(26 67)(27 68)(28 69)(29 70)(30 71)(31 72)(32 73)(33 74)(34 75)(35 76)(36 77)(37 78)(38 79)(39 80)(40 81)(41 82)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41)(42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82)
(2 11 19 17 38)(3 21 37 33 34)(4 31 14 8 30)(5 41 32 24 26)(6 10 9 40 22)(7 20 27 15 18)(12 29 35 13 39)(16 28 25 36 23)(43 52 60 58 79)(44 62 78 74 75)(45 72 55 49 71)(46 82 73 65 67)(47 51 50 81 63)(48 61 68 56 59)(53 70 76 54 80)(57 69 66 77 64)

G:=sub<Sym(82)| (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,81)(41,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82), (2,11,19,17,38)(3,21,37,33,34)(4,31,14,8,30)(5,41,32,24,26)(6,10,9,40,22)(7,20,27,15,18)(12,29,35,13,39)(16,28,25,36,23)(43,52,60,58,79)(44,62,78,74,75)(45,72,55,49,71)(46,82,73,65,67)(47,51,50,81,63)(48,61,68,56,59)(53,70,76,54,80)(57,69,66,77,64)>;

G:=Group( (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,81)(41,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82), (2,11,19,17,38)(3,21,37,33,34)(4,31,14,8,30)(5,41,32,24,26)(6,10,9,40,22)(7,20,27,15,18)(12,29,35,13,39)(16,28,25,36,23)(43,52,60,58,79)(44,62,78,74,75)(45,72,55,49,71)(46,82,73,65,67)(47,51,50,81,63)(48,61,68,56,59)(53,70,76,54,80)(57,69,66,77,64) );

G=PermutationGroup([[(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,49),(9,50),(10,51),(11,52),(12,53),(13,54),(14,55),(15,56),(16,57),(17,58),(18,59),(19,60),(20,61),(21,62),(22,63),(23,64),(24,65),(25,66),(26,67),(27,68),(28,69),(29,70),(30,71),(31,72),(32,73),(33,74),(34,75),(35,76),(36,77),(37,78),(38,79),(39,80),(40,81),(41,82)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41),(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)], [(2,11,19,17,38),(3,21,37,33,34),(4,31,14,8,30),(5,41,32,24,26),(6,10,9,40,22),(7,20,27,15,18),(12,29,35,13,39),(16,28,25,36,23),(43,52,60,58,79),(44,62,78,74,75),(45,72,55,49,71),(46,82,73,65,67),(47,51,50,81,63),(48,61,68,56,59),(53,70,76,54,80),(57,69,66,77,64)]])

Matrix representation of C2×C41⋊C5 in GL5(𝔽821)

8200000
0820000
0082000
0008200
0000820
,
6903156313281
10000
01000
00100
00010
,
10000
4962877183968
650720626241739
277771596656683
50639923162172

G:=sub<GL(5,GF(821))| [820,0,0,0,0,0,820,0,0,0,0,0,820,0,0,0,0,0,820,0,0,0,0,0,820],[690,1,0,0,0,315,0,1,0,0,631,0,0,1,0,328,0,0,0,1,1,0,0,0,0],[1,496,650,277,506,0,287,720,771,399,0,718,626,596,231,0,396,241,656,621,0,8,739,683,72] >;

C2×C41⋊C5 in GAP, Magma, Sage, TeX

C_2\times C_{41}\rtimes C_5
% in TeX

G:=Group("C2xC41:C5");
// GroupNames label

G:=SmallGroup(410,2);
// by ID

G=gap.SmallGroup(410,2);
# by ID

G:=PCGroup([3,-2,-5,-41,455]);
// Polycyclic

G:=Group<a,b,c|a^2=b^41=c^5=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^37>;
// generators/relations

Export

Subgroup lattice of C2×C41⋊C5 in TeX
Character table of C2×C41⋊C5 in TeX

׿
×
𝔽