direct product, metacyclic, supersoluble, monomial, Z-group, 5-hyperelementary
Aliases: C2×C41⋊C5, C82⋊C5, C41⋊2C10, SmallGroup(410,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C41 — C41⋊C5 — C2×C41⋊C5 |
C41 — C2×C41⋊C5 |
Generators and relations for C2×C41⋊C5
G = < a,b,c | a2=b41=c5=1, ab=ba, ac=ca, cbc-1=b37 >
Character table of C2×C41⋊C5
class | 1 | 2 | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 41A | 41B | 41C | 41D | 41E | 41F | 41G | 41H | 82A | 82B | 82C | 82D | 82E | 82F | 82G | 82H | |
size | 1 | 1 | 41 | 41 | 41 | 41 | 41 | 41 | 41 | 41 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | ζ53 | ζ52 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ4 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | ζ54 | ζ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ5 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | ζ52 | ζ53 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ6 | 1 | -1 | ζ52 | ζ53 | ζ5 | ζ54 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ7 | 1 | -1 | ζ5 | ζ54 | ζ53 | ζ52 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ8 | 1 | -1 | ζ53 | ζ52 | ζ54 | ζ5 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ9 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | ζ5 | ζ54 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ10 | 1 | -1 | ζ54 | ζ5 | ζ52 | ζ53 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 10 |
ρ11 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | -ζ4130-ζ4129-ζ4113-ζ417-ζ413 | -ζ4136-ζ4133-ζ4132-ζ4120-ζ412 | -ζ4140-ζ4131-ζ4125-ζ4123-ζ414 | -ζ4139-ζ4121-ζ419-ζ418-ζ415 | -ζ4126-ζ4119-ζ4117-ζ4114-ζ416 | -ζ4138-ζ4134-ζ4128-ζ4112-ζ4111 | -ζ4137-ζ4118-ζ4116-ζ4110-ζ41 | -ζ4135-ζ4127-ζ4124-ζ4122-ζ4115 | complex faithful |
ρ12 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | complex lifted from C41⋊C5 |
ρ13 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | -ζ4135-ζ4127-ζ4124-ζ4122-ζ4115 | -ζ4137-ζ4118-ζ4116-ζ4110-ζ41 | -ζ4136-ζ4133-ζ4132-ζ4120-ζ412 | -ζ4140-ζ4131-ζ4125-ζ4123-ζ414 | -ζ4130-ζ4129-ζ4113-ζ417-ζ413 | -ζ4126-ζ4119-ζ4117-ζ4114-ζ416 | -ζ4139-ζ4121-ζ419-ζ418-ζ415 | -ζ4138-ζ4134-ζ4128-ζ4112-ζ4111 | complex faithful |
ρ14 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | complex lifted from C41⋊C5 |
ρ15 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | -ζ4138-ζ4134-ζ4128-ζ4112-ζ4111 | -ζ4139-ζ4121-ζ419-ζ418-ζ415 | -ζ4137-ζ4118-ζ4116-ζ4110-ζ41 | -ζ4136-ζ4133-ζ4132-ζ4120-ζ412 | -ζ4135-ζ4127-ζ4124-ζ4122-ζ4115 | -ζ4130-ζ4129-ζ4113-ζ417-ζ413 | -ζ4140-ζ4131-ζ4125-ζ4123-ζ414 | -ζ4126-ζ4119-ζ4117-ζ4114-ζ416 | complex faithful |
ρ16 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | complex lifted from C41⋊C5 |
ρ17 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | -ζ4139-ζ4121-ζ419-ζ418-ζ415 | -ζ4126-ζ4119-ζ4117-ζ4114-ζ416 | -ζ4138-ζ4134-ζ4128-ζ4112-ζ4111 | -ζ4135-ζ4127-ζ4124-ζ4122-ζ4115 | -ζ4137-ζ4118-ζ4116-ζ4110-ζ41 | -ζ4136-ζ4133-ζ4132-ζ4120-ζ412 | -ζ4130-ζ4129-ζ4113-ζ417-ζ413 | -ζ4140-ζ4131-ζ4125-ζ4123-ζ414 | complex faithful |
ρ18 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | complex lifted from C41⋊C5 |
ρ19 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | -ζ4137-ζ4118-ζ4116-ζ4110-ζ41 | -ζ4138-ζ4134-ζ4128-ζ4112-ζ4111 | -ζ4135-ζ4127-ζ4124-ζ4122-ζ4115 | -ζ4130-ζ4129-ζ4113-ζ417-ζ413 | -ζ4136-ζ4133-ζ4132-ζ4120-ζ412 | -ζ4140-ζ4131-ζ4125-ζ4123-ζ414 | -ζ4126-ζ4119-ζ4117-ζ4114-ζ416 | -ζ4139-ζ4121-ζ419-ζ418-ζ415 | complex faithful |
ρ20 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | complex lifted from C41⋊C5 |
ρ21 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | complex lifted from C41⋊C5 |
ρ22 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | -ζ4126-ζ4119-ζ4117-ζ4114-ζ416 | -ζ4140-ζ4131-ζ4125-ζ4123-ζ414 | -ζ4139-ζ4121-ζ419-ζ418-ζ415 | -ζ4137-ζ4118-ζ4116-ζ4110-ζ41 | -ζ4138-ζ4134-ζ4128-ζ4112-ζ4111 | -ζ4135-ζ4127-ζ4124-ζ4122-ζ4115 | -ζ4136-ζ4133-ζ4132-ζ4120-ζ412 | -ζ4130-ζ4129-ζ4113-ζ417-ζ413 | complex faithful |
ρ23 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | complex lifted from C41⋊C5 |
ρ24 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | -ζ4136-ζ4133-ζ4132-ζ4120-ζ412 | -ζ4135-ζ4127-ζ4124-ζ4122-ζ4115 | -ζ4130-ζ4129-ζ4113-ζ417-ζ413 | -ζ4126-ζ4119-ζ4117-ζ4114-ζ416 | -ζ4140-ζ4131-ζ4125-ζ4123-ζ414 | -ζ4139-ζ4121-ζ419-ζ418-ζ415 | -ζ4138-ζ4134-ζ4128-ζ4112-ζ4111 | -ζ4137-ζ4118-ζ4116-ζ4110-ζ41 | complex faithful |
ρ25 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | complex lifted from C41⋊C5 |
ρ26 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ4137+ζ4118+ζ4116+ζ4110+ζ41 | ζ4140+ζ4131+ζ4125+ζ4123+ζ414 | ζ4130+ζ4129+ζ4113+ζ417+ζ413 | ζ4139+ζ4121+ζ419+ζ418+ζ415 | ζ4126+ζ4119+ζ4117+ζ4114+ζ416 | ζ4138+ζ4134+ζ4128+ζ4112+ζ4111 | ζ4135+ζ4127+ζ4124+ζ4122+ζ4115 | ζ4136+ζ4133+ζ4132+ζ4120+ζ412 | -ζ4140-ζ4131-ζ4125-ζ4123-ζ414 | -ζ4130-ζ4129-ζ4113-ζ417-ζ413 | -ζ4126-ζ4119-ζ4117-ζ4114-ζ416 | -ζ4138-ζ4134-ζ4128-ζ4112-ζ4111 | -ζ4139-ζ4121-ζ419-ζ418-ζ415 | -ζ4137-ζ4118-ζ4116-ζ4110-ζ41 | -ζ4135-ζ4127-ζ4124-ζ4122-ζ4115 | -ζ4136-ζ4133-ζ4132-ζ4120-ζ412 | complex faithful |
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 49)(9 50)(10 51)(11 52)(12 53)(13 54)(14 55)(15 56)(16 57)(17 58)(18 59)(19 60)(20 61)(21 62)(22 63)(23 64)(24 65)(25 66)(26 67)(27 68)(28 69)(29 70)(30 71)(31 72)(32 73)(33 74)(34 75)(35 76)(36 77)(37 78)(38 79)(39 80)(40 81)(41 82)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41)(42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82)
(2 11 19 17 38)(3 21 37 33 34)(4 31 14 8 30)(5 41 32 24 26)(6 10 9 40 22)(7 20 27 15 18)(12 29 35 13 39)(16 28 25 36 23)(43 52 60 58 79)(44 62 78 74 75)(45 72 55 49 71)(46 82 73 65 67)(47 51 50 81 63)(48 61 68 56 59)(53 70 76 54 80)(57 69 66 77 64)
G:=sub<Sym(82)| (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,81)(41,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82), (2,11,19,17,38)(3,21,37,33,34)(4,31,14,8,30)(5,41,32,24,26)(6,10,9,40,22)(7,20,27,15,18)(12,29,35,13,39)(16,28,25,36,23)(43,52,60,58,79)(44,62,78,74,75)(45,72,55,49,71)(46,82,73,65,67)(47,51,50,81,63)(48,61,68,56,59)(53,70,76,54,80)(57,69,66,77,64)>;
G:=Group( (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,51)(11,52)(12,53)(13,54)(14,55)(15,56)(16,57)(17,58)(18,59)(19,60)(20,61)(21,62)(22,63)(23,64)(24,65)(25,66)(26,67)(27,68)(28,69)(29,70)(30,71)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,81)(41,82), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82), (2,11,19,17,38)(3,21,37,33,34)(4,31,14,8,30)(5,41,32,24,26)(6,10,9,40,22)(7,20,27,15,18)(12,29,35,13,39)(16,28,25,36,23)(43,52,60,58,79)(44,62,78,74,75)(45,72,55,49,71)(46,82,73,65,67)(47,51,50,81,63)(48,61,68,56,59)(53,70,76,54,80)(57,69,66,77,64) );
G=PermutationGroup([[(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,49),(9,50),(10,51),(11,52),(12,53),(13,54),(14,55),(15,56),(16,57),(17,58),(18,59),(19,60),(20,61),(21,62),(22,63),(23,64),(24,65),(25,66),(26,67),(27,68),(28,69),(29,70),(30,71),(31,72),(32,73),(33,74),(34,75),(35,76),(36,77),(37,78),(38,79),(39,80),(40,81),(41,82)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41),(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)], [(2,11,19,17,38),(3,21,37,33,34),(4,31,14,8,30),(5,41,32,24,26),(6,10,9,40,22),(7,20,27,15,18),(12,29,35,13,39),(16,28,25,36,23),(43,52,60,58,79),(44,62,78,74,75),(45,72,55,49,71),(46,82,73,65,67),(47,51,50,81,63),(48,61,68,56,59),(53,70,76,54,80),(57,69,66,77,64)]])
Matrix representation of C2×C41⋊C5 ►in GL5(𝔽821)
820 | 0 | 0 | 0 | 0 |
0 | 820 | 0 | 0 | 0 |
0 | 0 | 820 | 0 | 0 |
0 | 0 | 0 | 820 | 0 |
0 | 0 | 0 | 0 | 820 |
690 | 315 | 631 | 328 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
496 | 287 | 718 | 396 | 8 |
650 | 720 | 626 | 241 | 739 |
277 | 771 | 596 | 656 | 683 |
506 | 399 | 231 | 621 | 72 |
G:=sub<GL(5,GF(821))| [820,0,0,0,0,0,820,0,0,0,0,0,820,0,0,0,0,0,820,0,0,0,0,0,820],[690,1,0,0,0,315,0,1,0,0,631,0,0,1,0,328,0,0,0,1,1,0,0,0,0],[1,496,650,277,506,0,287,720,771,399,0,718,626,596,231,0,396,241,656,621,0,8,739,683,72] >;
C2×C41⋊C5 in GAP, Magma, Sage, TeX
C_2\times C_{41}\rtimes C_5
% in TeX
G:=Group("C2xC41:C5");
// GroupNames label
G:=SmallGroup(410,2);
// by ID
G=gap.SmallGroup(410,2);
# by ID
G:=PCGroup([3,-2,-5,-41,455]);
// Polycyclic
G:=Group<a,b,c|a^2=b^41=c^5=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^37>;
// generators/relations
Export
Subgroup lattice of C2×C41⋊C5 in TeX
Character table of C2×C41⋊C5 in TeX