Copied to
clipboard

G = C41⋊C10order 410 = 2·5·41

The semidirect product of C41 and C10 acting faithfully

metacyclic, supersoluble, monomial, Z-group

Aliases: C41⋊C10, D41⋊C5, C41⋊C5⋊C2, SmallGroup(410,1)

Series: Derived Chief Lower central Upper central

C1C41 — C41⋊C10
C1C41C41⋊C5 — C41⋊C10
C41 — C41⋊C10
C1

Generators and relations for C41⋊C10
 G = < a,b | a41=b10=1, bab-1=a23 >

41C2
41C5
41C10

Character table of C41⋊C10

 class 125A5B5C5D10A10B10C10D41A41B41C41D
 size 141414141414141414110101010
ρ111111111111111    trivial
ρ21-11111-1-1-1-11111    linear of order 2
ρ311ζ52ζ54ζ5ζ53ζ5ζ54ζ53ζ521111    linear of order 5
ρ411ζ5ζ52ζ53ζ54ζ53ζ52ζ54ζ51111    linear of order 5
ρ51-1ζ54ζ53ζ52ζ552535541111    linear of order 10
ρ61-1ζ5ζ52ζ53ζ5453525451111    linear of order 10
ρ71-1ζ53ζ5ζ54ζ5254552531111    linear of order 10
ρ811ζ53ζ5ζ54ζ52ζ54ζ5ζ52ζ531111    linear of order 5
ρ91-1ζ52ζ54ζ5ζ5355453521111    linear of order 10
ρ1011ζ54ζ53ζ52ζ5ζ52ζ53ζ5ζ541111    linear of order 5
ρ1110000000000ζ413541274126412441224119411741154114416ζ41384134413041294128411341124111417413ζ413941364133413241214120419418415412ζ4140413741314125412341184116411041441    orthogonal faithful
ρ1210000000000ζ413941364133413241214120419418415412ζ4140413741314125412341184116411041441ζ41384134413041294128411341124111417413ζ413541274126412441224119411741154114416    orthogonal faithful
ρ1310000000000ζ41384134413041294128411341124111417413ζ413541274126412441224119411741154114416ζ4140413741314125412341184116411041441ζ413941364133413241214120419418415412    orthogonal faithful
ρ1410000000000ζ4140413741314125412341184116411041441ζ413941364133413241214120419418415412ζ413541274126412441224119411741154114416ζ41384134413041294128411341124111417413    orthogonal faithful

Smallest permutation representation of C41⋊C10
On 41 points: primitive
Generators in S41
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41)
(2 26 11 5 19 41 17 32 38 24)(3 10 21 9 37 40 33 22 34 6)(4 35 31 13 14 39 8 12 30 29)(7 28 20 25 27 36 15 23 18 16)

G:=sub<Sym(41)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41), (2,26,11,5,19,41,17,32,38,24)(3,10,21,9,37,40,33,22,34,6)(4,35,31,13,14,39,8,12,30,29)(7,28,20,25,27,36,15,23,18,16)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41), (2,26,11,5,19,41,17,32,38,24)(3,10,21,9,37,40,33,22,34,6)(4,35,31,13,14,39,8,12,30,29)(7,28,20,25,27,36,15,23,18,16) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)], [(2,26,11,5,19,41,17,32,38,24),(3,10,21,9,37,40,33,22,34,6),(4,35,31,13,14,39,8,12,30,29),(7,28,20,25,27,36,15,23,18,16)]])

Matrix representation of C41⋊C10 in GL10(𝔽821)

678100000000
267010000000
33001000000
407000100000
724000010000
456000001000
455000000100
723000000010
596000000001
6991626192504309189502816505
,
71194660530176537605801632435
47231543062581556230970195436
7697279279374828738698262610
150693672326483391644402564308
2016721481014933123589501727
35218538337936630537374025818
17781766223461262938944474759
23824114881715882247181245782
816626311153418103545564600793
377921431133066520312875035

G:=sub<GL(10,GF(821))| [678,267,33,407,724,456,455,723,596,699,1,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,626,0,0,1,0,0,0,0,0,0,192,0,0,0,1,0,0,0,0,0,504,0,0,0,0,1,0,0,0,0,309,0,0,0,0,0,1,0,0,0,189,0,0,0,0,0,0,1,0,0,502,0,0,0,0,0,0,0,1,0,816,0,0,0,0,0,0,0,0,1,505],[71,472,769,150,201,352,177,238,816,37,194,315,727,693,672,185,817,241,626,792,660,430,92,672,14,383,662,148,311,143,530,625,793,326,810,379,234,817,153,113,176,815,748,483,149,366,612,158,418,306,537,562,28,391,331,305,629,82,103,65,605,309,738,644,23,373,389,247,545,203,801,70,698,402,589,740,44,181,564,128,632,195,262,564,501,258,474,245,600,750,435,436,610,308,727,18,759,782,793,35] >;

C41⋊C10 in GAP, Magma, Sage, TeX

C_{41}\rtimes C_{10}
% in TeX

G:=Group("C41:C10");
// GroupNames label

G:=SmallGroup(410,1);
// by ID

G=gap.SmallGroup(410,1);
# by ID

G:=PCGroup([3,-2,-5,-41,3602,455]);
// Polycyclic

G:=Group<a,b|a^41=b^10=1,b*a*b^-1=a^23>;
// generators/relations

Export

Subgroup lattice of C41⋊C10 in TeX
Character table of C41⋊C10 in TeX

׿
×
𝔽