direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C3×C17⋊C8, C17⋊C24, C51⋊2C8, D17.C12, C17⋊C4.C6, (C3×D17).2C4, (C3×C17⋊C4).2C2, SmallGroup(408,33)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C17 — D17 — C17⋊C4 — C3×C17⋊C4 — C3×C17⋊C8 |
C17 — C3×C17⋊C8 |
Generators and relations for C3×C17⋊C8
G = < a,b,c | a3=b17=c8=1, ab=ba, ac=ca, cbc-1=b2 >
Character table of C3×C17⋊C8
class | 1 | 2 | 3A | 3B | 4A | 4B | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 17A | 17B | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | 51A | 51B | 51C | 51D | |
size | 1 | 17 | 1 | 1 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 8 | 8 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | ζ6 | ζ65 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 6 |
ρ4 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ5 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | ζ65 | ζ6 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 6 |
ρ6 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -i | i | i | -i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | -i | i | i | -i | -i | i | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | ζ8 | ζ87 | ζ83 | ζ85 | i | -i | i | -i | 1 | 1 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | 1 | 1 | 1 | 1 | linear of order 8 |
ρ10 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | ζ83 | ζ85 | ζ8 | ζ87 | -i | i | -i | i | 1 | 1 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | 1 | 1 | 1 | 1 | linear of order 8 |
ρ11 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | ζ85 | ζ83 | ζ87 | ζ8 | i | -i | i | -i | 1 | 1 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | 1 | 1 | 1 | 1 | linear of order 8 |
ρ12 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | ζ87 | ζ8 | ζ85 | ζ83 | -i | i | -i | i | 1 | 1 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | 1 | 1 | 1 | 1 | linear of order 8 |
ρ13 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | -i | i | i | -i | ζ65 | ζ6 | ζ6 | ζ65 | 1 | 1 | ζ43ζ32 | ζ4ζ3 | ζ4ζ3 | ζ43ζ3 | ζ43ζ3 | ζ4ζ32 | ζ4ζ32 | ζ43ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 12 |
ρ14 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | i | -i | -i | i | ζ6 | ζ65 | ζ65 | ζ6 | 1 | 1 | ζ4ζ3 | ζ43ζ32 | ζ43ζ32 | ζ4ζ32 | ζ4ζ32 | ζ43ζ3 | ζ43ζ3 | ζ4ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 12 |
ρ15 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | -i | i | i | -i | ζ6 | ζ65 | ζ65 | ζ6 | 1 | 1 | ζ43ζ3 | ζ4ζ32 | ζ4ζ32 | ζ43ζ32 | ζ43ζ32 | ζ4ζ3 | ζ4ζ3 | ζ43ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 12 |
ρ16 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | i | -i | -i | i | ζ65 | ζ6 | ζ6 | ζ65 | 1 | 1 | ζ4ζ32 | ζ43ζ3 | ζ43ζ3 | ζ4ζ3 | ζ4ζ3 | ζ43ζ32 | ζ43ζ32 | ζ4ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 12 |
ρ17 | 1 | -1 | ζ32 | ζ3 | i | -i | ζ6 | ζ65 | ζ83 | ζ85 | ζ8 | ζ87 | ζ86ζ3 | ζ82ζ32 | ζ86ζ32 | ζ82ζ3 | 1 | 1 | ζ83ζ32 | ζ85ζ3 | ζ8ζ3 | ζ87ζ3 | ζ83ζ3 | ζ85ζ32 | ζ8ζ32 | ζ87ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 24 |
ρ18 | 1 | -1 | ζ32 | ζ3 | -i | i | ζ6 | ζ65 | ζ85 | ζ83 | ζ87 | ζ8 | ζ82ζ3 | ζ86ζ32 | ζ82ζ32 | ζ86ζ3 | 1 | 1 | ζ85ζ32 | ζ83ζ3 | ζ87ζ3 | ζ8ζ3 | ζ85ζ3 | ζ83ζ32 | ζ87ζ32 | ζ8ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 24 |
ρ19 | 1 | -1 | ζ32 | ζ3 | -i | i | ζ6 | ζ65 | ζ8 | ζ87 | ζ83 | ζ85 | ζ82ζ3 | ζ86ζ32 | ζ82ζ32 | ζ86ζ3 | 1 | 1 | ζ8ζ32 | ζ87ζ3 | ζ83ζ3 | ζ85ζ3 | ζ8ζ3 | ζ87ζ32 | ζ83ζ32 | ζ85ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 24 |
ρ20 | 1 | -1 | ζ3 | ζ32 | -i | i | ζ65 | ζ6 | ζ85 | ζ83 | ζ87 | ζ8 | ζ82ζ32 | ζ86ζ3 | ζ82ζ3 | ζ86ζ32 | 1 | 1 | ζ85ζ3 | ζ83ζ32 | ζ87ζ32 | ζ8ζ32 | ζ85ζ32 | ζ83ζ3 | ζ87ζ3 | ζ8ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 24 |
ρ21 | 1 | -1 | ζ3 | ζ32 | i | -i | ζ65 | ζ6 | ζ87 | ζ8 | ζ85 | ζ83 | ζ86ζ32 | ζ82ζ3 | ζ86ζ3 | ζ82ζ32 | 1 | 1 | ζ87ζ3 | ζ8ζ32 | ζ85ζ32 | ζ83ζ32 | ζ87ζ32 | ζ8ζ3 | ζ85ζ3 | ζ83ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 24 |
ρ22 | 1 | -1 | ζ32 | ζ3 | i | -i | ζ6 | ζ65 | ζ87 | ζ8 | ζ85 | ζ83 | ζ86ζ3 | ζ82ζ32 | ζ86ζ32 | ζ82ζ3 | 1 | 1 | ζ87ζ32 | ζ8ζ3 | ζ85ζ3 | ζ83ζ3 | ζ87ζ3 | ζ8ζ32 | ζ85ζ32 | ζ83ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 24 |
ρ23 | 1 | -1 | ζ3 | ζ32 | i | -i | ζ65 | ζ6 | ζ83 | ζ85 | ζ8 | ζ87 | ζ86ζ32 | ζ82ζ3 | ζ86ζ3 | ζ82ζ32 | 1 | 1 | ζ83ζ3 | ζ85ζ32 | ζ8ζ32 | ζ87ζ32 | ζ83ζ32 | ζ85ζ3 | ζ8ζ3 | ζ87ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 24 |
ρ24 | 1 | -1 | ζ3 | ζ32 | -i | i | ζ65 | ζ6 | ζ8 | ζ87 | ζ83 | ζ85 | ζ82ζ32 | ζ86ζ3 | ζ82ζ3 | ζ86ζ32 | 1 | 1 | ζ8ζ3 | ζ87ζ32 | ζ83ζ32 | ζ85ζ32 | ζ8ζ32 | ζ87ζ3 | ζ83ζ3 | ζ85ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 24 |
ρ25 | 8 | 0 | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√17/2 | -1-√17/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√17/2 | -1+√17/2 | -1+√17/2 | -1-√17/2 | orthogonal lifted from C17⋊C8 |
ρ26 | 8 | 0 | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√17/2 | -1+√17/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√17/2 | -1-√17/2 | -1-√17/2 | -1+√17/2 | orthogonal lifted from C17⋊C8 |
ρ27 | 8 | 0 | -4-4√-3 | -4+4√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√17/2 | -1+√17/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32ζ1716+ζ32ζ1715+ζ32ζ1713+ζ32ζ179+ζ32ζ178+ζ32ζ174+ζ32ζ172+ζ32ζ17 | ζ3ζ1714+ζ3ζ1712+ζ3ζ1711+ζ3ζ1710+ζ3ζ177+ζ3ζ176+ζ3ζ175+ζ3ζ173 | ζ32ζ1714+ζ32ζ1712+ζ32ζ1711+ζ32ζ1710+ζ32ζ177+ζ32ζ176+ζ32ζ175+ζ32ζ173 | ζ3ζ1716+ζ3ζ1715+ζ3ζ1713+ζ3ζ179+ζ3ζ178+ζ3ζ174+ζ3ζ172+ζ3ζ17 | complex faithful |
ρ28 | 8 | 0 | -4-4√-3 | -4+4√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√17/2 | -1-√17/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32ζ1714+ζ32ζ1712+ζ32ζ1711+ζ32ζ1710+ζ32ζ177+ζ32ζ176+ζ32ζ175+ζ32ζ173 | ζ3ζ1716+ζ3ζ1715+ζ3ζ1713+ζ3ζ179+ζ3ζ178+ζ3ζ174+ζ3ζ172+ζ3ζ17 | ζ32ζ1716+ζ32ζ1715+ζ32ζ1713+ζ32ζ179+ζ32ζ178+ζ32ζ174+ζ32ζ172+ζ32ζ17 | ζ3ζ1714+ζ3ζ1712+ζ3ζ1711+ζ3ζ1710+ζ3ζ177+ζ3ζ176+ζ3ζ175+ζ3ζ173 | complex faithful |
ρ29 | 8 | 0 | -4+4√-3 | -4-4√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√17/2 | -1+√17/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3ζ1716+ζ3ζ1715+ζ3ζ1713+ζ3ζ179+ζ3ζ178+ζ3ζ174+ζ3ζ172+ζ3ζ17 | ζ32ζ1714+ζ32ζ1712+ζ32ζ1711+ζ32ζ1710+ζ32ζ177+ζ32ζ176+ζ32ζ175+ζ32ζ173 | ζ3ζ1714+ζ3ζ1712+ζ3ζ1711+ζ3ζ1710+ζ3ζ177+ζ3ζ176+ζ3ζ175+ζ3ζ173 | ζ32ζ1716+ζ32ζ1715+ζ32ζ1713+ζ32ζ179+ζ32ζ178+ζ32ζ174+ζ32ζ172+ζ32ζ17 | complex faithful |
ρ30 | 8 | 0 | -4+4√-3 | -4-4√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√17/2 | -1-√17/2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3ζ1714+ζ3ζ1712+ζ3ζ1711+ζ3ζ1710+ζ3ζ177+ζ3ζ176+ζ3ζ175+ζ3ζ173 | ζ32ζ1716+ζ32ζ1715+ζ32ζ1713+ζ32ζ179+ζ32ζ178+ζ32ζ174+ζ32ζ172+ζ32ζ17 | ζ3ζ1716+ζ3ζ1715+ζ3ζ1713+ζ3ζ179+ζ3ζ178+ζ3ζ174+ζ3ζ172+ζ3ζ17 | ζ32ζ1714+ζ32ζ1712+ζ32ζ1711+ζ32ζ1710+ζ32ζ177+ζ32ζ176+ζ32ζ175+ζ32ζ173 | complex faithful |
(1 35 18)(2 36 19)(3 37 20)(4 38 21)(5 39 22)(6 40 23)(7 41 24)(8 42 25)(9 43 26)(10 44 27)(11 45 28)(12 46 29)(13 47 30)(14 48 31)(15 49 32)(16 50 33)(17 51 34)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)
(2 10 14 16 17 9 5 3)(4 11 6 12 15 8 13 7)(19 27 31 33 34 26 22 20)(21 28 23 29 32 25 30 24)(36 44 48 50 51 43 39 37)(38 45 40 46 49 42 47 41)
G:=sub<Sym(51)| (1,35,18)(2,36,19)(3,37,20)(4,38,21)(5,39,22)(6,40,23)(7,41,24)(8,42,25)(9,43,26)(10,44,27)(11,45,28)(12,46,29)(13,47,30)(14,48,31)(15,49,32)(16,50,33)(17,51,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (2,10,14,16,17,9,5,3)(4,11,6,12,15,8,13,7)(19,27,31,33,34,26,22,20)(21,28,23,29,32,25,30,24)(36,44,48,50,51,43,39,37)(38,45,40,46,49,42,47,41)>;
G:=Group( (1,35,18)(2,36,19)(3,37,20)(4,38,21)(5,39,22)(6,40,23)(7,41,24)(8,42,25)(9,43,26)(10,44,27)(11,45,28)(12,46,29)(13,47,30)(14,48,31)(15,49,32)(16,50,33)(17,51,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (2,10,14,16,17,9,5,3)(4,11,6,12,15,8,13,7)(19,27,31,33,34,26,22,20)(21,28,23,29,32,25,30,24)(36,44,48,50,51,43,39,37)(38,45,40,46,49,42,47,41) );
G=PermutationGroup([[(1,35,18),(2,36,19),(3,37,20),(4,38,21),(5,39,22),(6,40,23),(7,41,24),(8,42,25),(9,43,26),(10,44,27),(11,45,28),(12,46,29),(13,47,30),(14,48,31),(15,49,32),(16,50,33),(17,51,34)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)], [(2,10,14,16,17,9,5,3),(4,11,6,12,15,8,13,7),(19,27,31,33,34,26,22,20),(21,28,23,29,32,25,30,24),(36,44,48,50,51,43,39,37),(38,45,40,46,49,42,47,41)]])
Matrix representation of C3×C17⋊C8 ►in GL9(𝔽409)
53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 38 | 37 | 79 | 37 | 38 | 40 | 408 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
343 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 408 | 40 | 38 | 37 | 79 | 37 | 38 | 40 |
0 | 407 | 40 | 39 | 407 | 40 | 408 | 408 | 1 |
0 | 370 | 332 | 293 | 294 | 294 | 293 | 332 | 370 |
0 | 1 | 408 | 408 | 40 | 407 | 39 | 40 | 407 |
G:=sub<GL(9,GF(409))| [53,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,40,1,0,0,0,0,0,0,0,38,0,1,0,0,0,0,0,0,37,0,0,1,0,0,0,0,0,79,0,0,0,1,0,0,0,0,37,0,0,0,0,1,0,0,0,38,0,0,0,0,0,1,0,0,40,0,0,0,0,0,0,1,0,408,0,0,0,0,0,0,0],[343,0,0,0,0,0,0,0,0,0,1,0,0,0,408,407,370,1,0,0,0,0,0,40,40,332,408,0,0,1,0,0,38,39,293,408,0,0,0,0,0,37,407,294,40,0,0,0,1,0,79,40,294,407,0,0,0,0,0,37,408,293,39,0,0,0,0,1,38,408,332,40,0,0,0,0,0,40,1,370,407] >;
C3×C17⋊C8 in GAP, Magma, Sage, TeX
C_3\times C_{17}\rtimes C_8
% in TeX
G:=Group("C3xC17:C8");
// GroupNames label
G:=SmallGroup(408,33);
// by ID
G=gap.SmallGroup(408,33);
# by ID
G:=PCGroup([5,-2,-3,-2,-2,-17,30,42,5404,1314,819]);
// Polycyclic
G:=Group<a,b,c|a^3=b^17=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations
Export
Subgroup lattice of C3×C17⋊C8 in TeX
Character table of C3×C17⋊C8 in TeX