Copied to
clipboard

G = C3×C17⋊C8order 408 = 23·3·17

Direct product of C3 and C17⋊C8

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C3×C17⋊C8, C17⋊C24, C512C8, D17.C12, C17⋊C4.C6, (C3×D17).2C4, (C3×C17⋊C4).2C2, SmallGroup(408,33)

Series: Derived Chief Lower central Upper central

C1C17 — C3×C17⋊C8
C1C17D17C17⋊C4C3×C17⋊C4 — C3×C17⋊C8
C17 — C3×C17⋊C8
C1C3

Generators and relations for C3×C17⋊C8
 G = < a,b,c | a3=b17=c8=1, ab=ba, ac=ca, cbc-1=b2 >

17C2
17C4
17C6
17C8
17C12
17C24

Character table of C3×C17⋊C8

 class 123A3B4A4B6A6B8A8B8C8D12A12B12C12D17A17B24A24B24C24D24E24F24G24H51A51B51C51D
 size 117111717171717171717171717178817171717171717178888
ρ1111111111111111111111111111111    trivial
ρ211111111-1-1-1-1111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ311ζ32ζ311ζ32ζ3-1-1-1-1ζ3ζ32ζ32ζ311ζ6ζ65ζ65ζ65ζ65ζ6ζ6ζ6ζ32ζ3ζ32ζ3    linear of order 6
ρ411ζ3ζ3211ζ3ζ321111ζ32ζ3ζ3ζ3211ζ3ζ32ζ32ζ32ζ32ζ3ζ3ζ3ζ3ζ32ζ3ζ32    linear of order 3
ρ511ζ3ζ3211ζ3ζ32-1-1-1-1ζ32ζ3ζ3ζ3211ζ65ζ6ζ6ζ6ζ6ζ65ζ65ζ65ζ3ζ32ζ3ζ32    linear of order 6
ρ611ζ32ζ311ζ32ζ31111ζ3ζ32ζ32ζ311ζ32ζ3ζ3ζ3ζ3ζ32ζ32ζ32ζ32ζ3ζ32ζ3    linear of order 3
ρ71111-1-111-iii-i-1-1-1-111-iii-i-iii-i1111    linear of order 4
ρ81111-1-111i-i-ii-1-1-1-111i-i-iii-i-ii1111    linear of order 4
ρ91-111-ii-1-1ζ8ζ87ζ83ζ85i-ii-i11ζ8ζ87ζ83ζ85ζ8ζ87ζ83ζ851111    linear of order 8
ρ101-111i-i-1-1ζ83ζ85ζ8ζ87-ii-ii11ζ83ζ85ζ8ζ87ζ83ζ85ζ8ζ871111    linear of order 8
ρ111-111-ii-1-1ζ85ζ83ζ87ζ8i-ii-i11ζ85ζ83ζ87ζ8ζ85ζ83ζ87ζ81111    linear of order 8
ρ121-111i-i-1-1ζ87ζ8ζ85ζ83-ii-ii11ζ87ζ8ζ85ζ83ζ87ζ8ζ85ζ831111    linear of order 8
ρ1311ζ32ζ3-1-1ζ32ζ3-iii-iζ65ζ6ζ6ζ6511ζ43ζ32ζ4ζ3ζ4ζ3ζ43ζ3ζ43ζ3ζ4ζ32ζ4ζ32ζ43ζ32ζ32ζ3ζ32ζ3    linear of order 12
ρ1411ζ3ζ32-1-1ζ3ζ32i-i-iiζ6ζ65ζ65ζ611ζ4ζ3ζ43ζ32ζ43ζ32ζ4ζ32ζ4ζ32ζ43ζ3ζ43ζ3ζ4ζ3ζ3ζ32ζ3ζ32    linear of order 12
ρ1511ζ3ζ32-1-1ζ3ζ32-iii-iζ6ζ65ζ65ζ611ζ43ζ3ζ4ζ32ζ4ζ32ζ43ζ32ζ43ζ32ζ4ζ3ζ4ζ3ζ43ζ3ζ3ζ32ζ3ζ32    linear of order 12
ρ1611ζ32ζ3-1-1ζ32ζ3i-i-iiζ65ζ6ζ6ζ6511ζ4ζ32ζ43ζ3ζ43ζ3ζ4ζ3ζ4ζ3ζ43ζ32ζ43ζ32ζ4ζ32ζ32ζ3ζ32ζ3    linear of order 12
ρ171-1ζ32ζ3i-iζ6ζ65ζ83ζ85ζ8ζ87ζ86ζ3ζ82ζ32ζ86ζ32ζ82ζ311ζ83ζ32ζ85ζ3ζ8ζ3ζ87ζ3ζ83ζ3ζ85ζ32ζ8ζ32ζ87ζ32ζ32ζ3ζ32ζ3    linear of order 24
ρ181-1ζ32ζ3-iiζ6ζ65ζ85ζ83ζ87ζ8ζ82ζ3ζ86ζ32ζ82ζ32ζ86ζ311ζ85ζ32ζ83ζ3ζ87ζ3ζ8ζ3ζ85ζ3ζ83ζ32ζ87ζ32ζ8ζ32ζ32ζ3ζ32ζ3    linear of order 24
ρ191-1ζ32ζ3-iiζ6ζ65ζ8ζ87ζ83ζ85ζ82ζ3ζ86ζ32ζ82ζ32ζ86ζ311ζ8ζ32ζ87ζ3ζ83ζ3ζ85ζ3ζ8ζ3ζ87ζ32ζ83ζ32ζ85ζ32ζ32ζ3ζ32ζ3    linear of order 24
ρ201-1ζ3ζ32-iiζ65ζ6ζ85ζ83ζ87ζ8ζ82ζ32ζ86ζ3ζ82ζ3ζ86ζ3211ζ85ζ3ζ83ζ32ζ87ζ32ζ8ζ32ζ85ζ32ζ83ζ3ζ87ζ3ζ8ζ3ζ3ζ32ζ3ζ32    linear of order 24
ρ211-1ζ3ζ32i-iζ65ζ6ζ87ζ8ζ85ζ83ζ86ζ32ζ82ζ3ζ86ζ3ζ82ζ3211ζ87ζ3ζ8ζ32ζ85ζ32ζ83ζ32ζ87ζ32ζ8ζ3ζ85ζ3ζ83ζ3ζ3ζ32ζ3ζ32    linear of order 24
ρ221-1ζ32ζ3i-iζ6ζ65ζ87ζ8ζ85ζ83ζ86ζ3ζ82ζ32ζ86ζ32ζ82ζ311ζ87ζ32ζ8ζ3ζ85ζ3ζ83ζ3ζ87ζ3ζ8ζ32ζ85ζ32ζ83ζ32ζ32ζ3ζ32ζ3    linear of order 24
ρ231-1ζ3ζ32i-iζ65ζ6ζ83ζ85ζ8ζ87ζ86ζ32ζ82ζ3ζ86ζ3ζ82ζ3211ζ83ζ3ζ85ζ32ζ8ζ32ζ87ζ32ζ83ζ32ζ85ζ3ζ8ζ3ζ87ζ3ζ3ζ32ζ3ζ32    linear of order 24
ρ241-1ζ3ζ32-iiζ65ζ6ζ8ζ87ζ83ζ85ζ82ζ32ζ86ζ3ζ82ζ3ζ86ζ3211ζ8ζ3ζ87ζ32ζ83ζ32ζ85ζ32ζ8ζ32ζ87ζ3ζ83ζ3ζ85ζ3ζ3ζ32ζ3ζ32    linear of order 24
ρ258088000000000000-1+17/2-1-17/200000000-1-17/2-1+17/2-1+17/2-1-17/2    orthogonal lifted from C17⋊C8
ρ268088000000000000-1-17/2-1+17/200000000-1+17/2-1-17/2-1-17/2-1+17/2    orthogonal lifted from C17⋊C8
ρ2780-4-4-3-4+4-3000000000000-1-17/2-1+17/200000000ζ32ζ171632ζ171532ζ171332ζ17932ζ17832ζ17432ζ17232ζ17ζ3ζ17143ζ17123ζ17113ζ17103ζ1773ζ1763ζ1753ζ173ζ32ζ171432ζ171232ζ171132ζ171032ζ17732ζ17632ζ17532ζ173ζ3ζ17163ζ17153ζ17133ζ1793ζ1783ζ1743ζ1723ζ17    complex faithful
ρ2880-4-4-3-4+4-3000000000000-1+17/2-1-17/200000000ζ32ζ171432ζ171232ζ171132ζ171032ζ17732ζ17632ζ17532ζ173ζ3ζ17163ζ17153ζ17133ζ1793ζ1783ζ1743ζ1723ζ17ζ32ζ171632ζ171532ζ171332ζ17932ζ17832ζ17432ζ17232ζ17ζ3ζ17143ζ17123ζ17113ζ17103ζ1773ζ1763ζ1753ζ173    complex faithful
ρ2980-4+4-3-4-4-3000000000000-1-17/2-1+17/200000000ζ3ζ17163ζ17153ζ17133ζ1793ζ1783ζ1743ζ1723ζ17ζ32ζ171432ζ171232ζ171132ζ171032ζ17732ζ17632ζ17532ζ173ζ3ζ17143ζ17123ζ17113ζ17103ζ1773ζ1763ζ1753ζ173ζ32ζ171632ζ171532ζ171332ζ17932ζ17832ζ17432ζ17232ζ17    complex faithful
ρ3080-4+4-3-4-4-3000000000000-1+17/2-1-17/200000000ζ3ζ17143ζ17123ζ17113ζ17103ζ1773ζ1763ζ1753ζ173ζ32ζ171632ζ171532ζ171332ζ17932ζ17832ζ17432ζ17232ζ17ζ3ζ17163ζ17153ζ17133ζ1793ζ1783ζ1743ζ1723ζ17ζ32ζ171432ζ171232ζ171132ζ171032ζ17732ζ17632ζ17532ζ173    complex faithful

Smallest permutation representation of C3×C17⋊C8
On 51 points
Generators in S51
(1 35 18)(2 36 19)(3 37 20)(4 38 21)(5 39 22)(6 40 23)(7 41 24)(8 42 25)(9 43 26)(10 44 27)(11 45 28)(12 46 29)(13 47 30)(14 48 31)(15 49 32)(16 50 33)(17 51 34)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)
(2 10 14 16 17 9 5 3)(4 11 6 12 15 8 13 7)(19 27 31 33 34 26 22 20)(21 28 23 29 32 25 30 24)(36 44 48 50 51 43 39 37)(38 45 40 46 49 42 47 41)

G:=sub<Sym(51)| (1,35,18)(2,36,19)(3,37,20)(4,38,21)(5,39,22)(6,40,23)(7,41,24)(8,42,25)(9,43,26)(10,44,27)(11,45,28)(12,46,29)(13,47,30)(14,48,31)(15,49,32)(16,50,33)(17,51,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (2,10,14,16,17,9,5,3)(4,11,6,12,15,8,13,7)(19,27,31,33,34,26,22,20)(21,28,23,29,32,25,30,24)(36,44,48,50,51,43,39,37)(38,45,40,46,49,42,47,41)>;

G:=Group( (1,35,18)(2,36,19)(3,37,20)(4,38,21)(5,39,22)(6,40,23)(7,41,24)(8,42,25)(9,43,26)(10,44,27)(11,45,28)(12,46,29)(13,47,30)(14,48,31)(15,49,32)(16,50,33)(17,51,34), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (2,10,14,16,17,9,5,3)(4,11,6,12,15,8,13,7)(19,27,31,33,34,26,22,20)(21,28,23,29,32,25,30,24)(36,44,48,50,51,43,39,37)(38,45,40,46,49,42,47,41) );

G=PermutationGroup([[(1,35,18),(2,36,19),(3,37,20),(4,38,21),(5,39,22),(6,40,23),(7,41,24),(8,42,25),(9,43,26),(10,44,27),(11,45,28),(12,46,29),(13,47,30),(14,48,31),(15,49,32),(16,50,33),(17,51,34)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)], [(2,10,14,16,17,9,5,3),(4,11,6,12,15,8,13,7),(19,27,31,33,34,26,22,20),(21,28,23,29,32,25,30,24),(36,44,48,50,51,43,39,37),(38,45,40,46,49,42,47,41)]])

Matrix representation of C3×C17⋊C8 in GL9(𝔽409)

5300000000
010000000
001000000
000100000
000010000
000001000
000000100
000000010
000000001
,
100000000
040383779373840408
010000000
001000000
000100000
000010000
000001000
000000100
000000010
,
34300000000
010000000
000100000
000001000
000000010
040840383779373840
04074039407404084081
0370332293294294293332370
01408408404073940407

G:=sub<GL(9,GF(409))| [53,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,40,1,0,0,0,0,0,0,0,38,0,1,0,0,0,0,0,0,37,0,0,1,0,0,0,0,0,79,0,0,0,1,0,0,0,0,37,0,0,0,0,1,0,0,0,38,0,0,0,0,0,1,0,0,40,0,0,0,0,0,0,1,0,408,0,0,0,0,0,0,0],[343,0,0,0,0,0,0,0,0,0,1,0,0,0,408,407,370,1,0,0,0,0,0,40,40,332,408,0,0,1,0,0,38,39,293,408,0,0,0,0,0,37,407,294,40,0,0,0,1,0,79,40,294,407,0,0,0,0,0,37,408,293,39,0,0,0,0,1,38,408,332,40,0,0,0,0,0,40,1,370,407] >;

C3×C17⋊C8 in GAP, Magma, Sage, TeX

C_3\times C_{17}\rtimes C_8
% in TeX

G:=Group("C3xC17:C8");
// GroupNames label

G:=SmallGroup(408,33);
// by ID

G=gap.SmallGroup(408,33);
# by ID

G:=PCGroup([5,-2,-3,-2,-2,-17,30,42,5404,1314,819]);
// Polycyclic

G:=Group<a,b,c|a^3=b^17=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations

Export

Subgroup lattice of C3×C17⋊C8 in TeX
Character table of C3×C17⋊C8 in TeX

׿
×
𝔽