metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D205, C41⋊D5, C5⋊D41, C205⋊1C2, sometimes denoted D410 or Dih205 or Dih410, SmallGroup(410,5)
Series: Derived ►Chief ►Lower central ►Upper central
| C205 — D205 |
Generators and relations for D205
G = < a,b | a205=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205)
(1 205)(2 204)(3 203)(4 202)(5 201)(6 200)(7 199)(8 198)(9 197)(10 196)(11 195)(12 194)(13 193)(14 192)(15 191)(16 190)(17 189)(18 188)(19 187)(20 186)(21 185)(22 184)(23 183)(24 182)(25 181)(26 180)(27 179)(28 178)(29 177)(30 176)(31 175)(32 174)(33 173)(34 172)(35 171)(36 170)(37 169)(38 168)(39 167)(40 166)(41 165)(42 164)(43 163)(44 162)(45 161)(46 160)(47 159)(48 158)(49 157)(50 156)(51 155)(52 154)(53 153)(54 152)(55 151)(56 150)(57 149)(58 148)(59 147)(60 146)(61 145)(62 144)(63 143)(64 142)(65 141)(66 140)(67 139)(68 138)(69 137)(70 136)(71 135)(72 134)(73 133)(74 132)(75 131)(76 130)(77 129)(78 128)(79 127)(80 126)(81 125)(82 124)(83 123)(84 122)(85 121)(86 120)(87 119)(88 118)(89 117)(90 116)(91 115)(92 114)(93 113)(94 112)(95 111)(96 110)(97 109)(98 108)(99 107)(100 106)(101 105)(102 104)
G:=sub<Sym(205)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205), (1,205)(2,204)(3,203)(4,202)(5,201)(6,200)(7,199)(8,198)(9,197)(10,196)(11,195)(12,194)(13,193)(14,192)(15,191)(16,190)(17,189)(18,188)(19,187)(20,186)(21,185)(22,184)(23,183)(24,182)(25,181)(26,180)(27,179)(28,178)(29,177)(30,176)(31,175)(32,174)(33,173)(34,172)(35,171)(36,170)(37,169)(38,168)(39,167)(40,166)(41,165)(42,164)(43,163)(44,162)(45,161)(46,160)(47,159)(48,158)(49,157)(50,156)(51,155)(52,154)(53,153)(54,152)(55,151)(56,150)(57,149)(58,148)(59,147)(60,146)(61,145)(62,144)(63,143)(64,142)(65,141)(66,140)(67,139)(68,138)(69,137)(70,136)(71,135)(72,134)(73,133)(74,132)(75,131)(76,130)(77,129)(78,128)(79,127)(80,126)(81,125)(82,124)(83,123)(84,122)(85,121)(86,120)(87,119)(88,118)(89,117)(90,116)(91,115)(92,114)(93,113)(94,112)(95,111)(96,110)(97,109)(98,108)(99,107)(100,106)(101,105)(102,104)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205), (1,205)(2,204)(3,203)(4,202)(5,201)(6,200)(7,199)(8,198)(9,197)(10,196)(11,195)(12,194)(13,193)(14,192)(15,191)(16,190)(17,189)(18,188)(19,187)(20,186)(21,185)(22,184)(23,183)(24,182)(25,181)(26,180)(27,179)(28,178)(29,177)(30,176)(31,175)(32,174)(33,173)(34,172)(35,171)(36,170)(37,169)(38,168)(39,167)(40,166)(41,165)(42,164)(43,163)(44,162)(45,161)(46,160)(47,159)(48,158)(49,157)(50,156)(51,155)(52,154)(53,153)(54,152)(55,151)(56,150)(57,149)(58,148)(59,147)(60,146)(61,145)(62,144)(63,143)(64,142)(65,141)(66,140)(67,139)(68,138)(69,137)(70,136)(71,135)(72,134)(73,133)(74,132)(75,131)(76,130)(77,129)(78,128)(79,127)(80,126)(81,125)(82,124)(83,123)(84,122)(85,121)(86,120)(87,119)(88,118)(89,117)(90,116)(91,115)(92,114)(93,113)(94,112)(95,111)(96,110)(97,109)(98,108)(99,107)(100,106)(101,105)(102,104) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205)], [(1,205),(2,204),(3,203),(4,202),(5,201),(6,200),(7,199),(8,198),(9,197),(10,196),(11,195),(12,194),(13,193),(14,192),(15,191),(16,190),(17,189),(18,188),(19,187),(20,186),(21,185),(22,184),(23,183),(24,182),(25,181),(26,180),(27,179),(28,178),(29,177),(30,176),(31,175),(32,174),(33,173),(34,172),(35,171),(36,170),(37,169),(38,168),(39,167),(40,166),(41,165),(42,164),(43,163),(44,162),(45,161),(46,160),(47,159),(48,158),(49,157),(50,156),(51,155),(52,154),(53,153),(54,152),(55,151),(56,150),(57,149),(58,148),(59,147),(60,146),(61,145),(62,144),(63,143),(64,142),(65,141),(66,140),(67,139),(68,138),(69,137),(70,136),(71,135),(72,134),(73,133),(74,132),(75,131),(76,130),(77,129),(78,128),(79,127),(80,126),(81,125),(82,124),(83,123),(84,122),(85,121),(86,120),(87,119),(88,118),(89,117),(90,116),(91,115),(92,114),(93,113),(94,112),(95,111),(96,110),(97,109),(98,108),(99,107),(100,106),(101,105),(102,104)]])
104 conjugacy classes
| class | 1 | 2 | 5A | 5B | 41A | ··· | 41T | 205A | ··· | 205CB |
| order | 1 | 2 | 5 | 5 | 41 | ··· | 41 | 205 | ··· | 205 |
| size | 1 | 205 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
104 irreducible representations
| dim | 1 | 1 | 2 | 2 | 2 |
| type | + | + | + | + | + |
| image | C1 | C2 | D5 | D41 | D205 |
| kernel | D205 | C205 | C41 | C5 | C1 |
| # reps | 1 | 1 | 2 | 20 | 80 |
Matrix representation of D205 ►in GL2(𝔽821) generated by
| 600 | 12 |
| 809 | 387 |
| 600 | 12 |
| 35 | 221 |
G:=sub<GL(2,GF(821))| [600,809,12,387],[600,35,12,221] >;
D205 in GAP, Magma, Sage, TeX
D_{205} % in TeX
G:=Group("D205"); // GroupNames label
G:=SmallGroup(410,5);
// by ID
G=gap.SmallGroup(410,5);
# by ID
G:=PCGroup([3,-2,-5,-41,49,3602]);
// Polycyclic
G:=Group<a,b|a^205=b^2=1,b*a*b=a^-1>;
// generators/relations
Export