metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D26⋊1D4, Dic13⋊2D4, C23.5D26, (C2×D52)⋊3C2, C2.9(D4×D13), (C2×C4).7D26, C13⋊1(C4⋊D4), C22⋊C4⋊4D13, C26.20(C2×D4), C26.9(C4○D4), C26.D4⋊5C2, D26⋊C4⋊11C2, (C2×C26).25C23, (C2×C52).53C22, C2.11(D52⋊5C2), (C22×C26).14C22, (C2×Dic13).7C22, C22.43(C22×D13), (C22×D13).21C22, (C2×C4×D13)⋊11C2, (C2×C13⋊D4)⋊2C2, (C13×C22⋊C4)⋊6C2, SmallGroup(416,105)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D26⋊D4
G = < a,b,c,d | a26=b2=c4=d2=1, bab=cac-1=dad=a-1, cbc-1=a24b, dbd=a11b, dcd=c-1 >
Subgroups: 760 in 94 conjugacy classes, 33 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C13, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, D13, C26, C26, C4⋊D4, Dic13, Dic13, C52, D26, D26, C2×C26, C2×C26, C4×D13, D52, C2×Dic13, C13⋊D4, C2×C52, C22×D13, C22×C26, C26.D4, D26⋊C4, C13×C22⋊C4, C2×C4×D13, C2×D52, C2×C13⋊D4, D26⋊D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, D13, C4⋊D4, D26, C22×D13, D52⋊5C2, D4×D13, D26⋊D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182)(183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208)
(1 101)(2 100)(3 99)(4 98)(5 97)(6 96)(7 95)(8 94)(9 93)(10 92)(11 91)(12 90)(13 89)(14 88)(15 87)(16 86)(17 85)(18 84)(19 83)(20 82)(21 81)(22 80)(23 79)(24 104)(25 103)(26 102)(27 58)(28 57)(29 56)(30 55)(31 54)(32 53)(33 78)(34 77)(35 76)(36 75)(37 74)(38 73)(39 72)(40 71)(41 70)(42 69)(43 68)(44 67)(45 66)(46 65)(47 64)(48 63)(49 62)(50 61)(51 60)(52 59)(105 157)(106 182)(107 181)(108 180)(109 179)(110 178)(111 177)(112 176)(113 175)(114 174)(115 173)(116 172)(117 171)(118 170)(119 169)(120 168)(121 167)(122 166)(123 165)(124 164)(125 163)(126 162)(127 161)(128 160)(129 159)(130 158)(131 187)(132 186)(133 185)(134 184)(135 183)(136 208)(137 207)(138 206)(139 205)(140 204)(141 203)(142 202)(143 201)(144 200)(145 199)(146 198)(147 197)(148 196)(149 195)(150 194)(151 193)(152 192)(153 191)(154 190)(155 189)(156 188)
(1 41 89 58)(2 40 90 57)(3 39 91 56)(4 38 92 55)(5 37 93 54)(6 36 94 53)(7 35 95 78)(8 34 96 77)(9 33 97 76)(10 32 98 75)(11 31 99 74)(12 30 100 73)(13 29 101 72)(14 28 102 71)(15 27 103 70)(16 52 104 69)(17 51 79 68)(18 50 80 67)(19 49 81 66)(20 48 82 65)(21 47 83 64)(22 46 84 63)(23 45 85 62)(24 44 86 61)(25 43 87 60)(26 42 88 59)(105 208 158 137)(106 207 159 136)(107 206 160 135)(108 205 161 134)(109 204 162 133)(110 203 163 132)(111 202 164 131)(112 201 165 156)(113 200 166 155)(114 199 167 154)(115 198 168 153)(116 197 169 152)(117 196 170 151)(118 195 171 150)(119 194 172 149)(120 193 173 148)(121 192 174 147)(122 191 175 146)(123 190 176 145)(124 189 177 144)(125 188 178 143)(126 187 179 142)(127 186 180 141)(128 185 181 140)(129 184 182 139)(130 183 157 138)
(1 195)(2 194)(3 193)(4 192)(5 191)(6 190)(7 189)(8 188)(9 187)(10 186)(11 185)(12 184)(13 183)(14 208)(15 207)(16 206)(17 205)(18 204)(19 203)(20 202)(21 201)(22 200)(23 199)(24 198)(25 197)(26 196)(27 106)(28 105)(29 130)(30 129)(31 128)(32 127)(33 126)(34 125)(35 124)(36 123)(37 122)(38 121)(39 120)(40 119)(41 118)(42 117)(43 116)(44 115)(45 114)(46 113)(47 112)(48 111)(49 110)(50 109)(51 108)(52 107)(53 176)(54 175)(55 174)(56 173)(57 172)(58 171)(59 170)(60 169)(61 168)(62 167)(63 166)(64 165)(65 164)(66 163)(67 162)(68 161)(69 160)(70 159)(71 158)(72 157)(73 182)(74 181)(75 180)(76 179)(77 178)(78 177)(79 134)(80 133)(81 132)(82 131)(83 156)(84 155)(85 154)(86 153)(87 152)(88 151)(89 150)(90 149)(91 148)(92 147)(93 146)(94 145)(95 144)(96 143)(97 142)(98 141)(99 140)(100 139)(101 138)(102 137)(103 136)(104 135)
G:=sub<Sym(208)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,101)(2,100)(3,99)(4,98)(5,97)(6,96)(7,95)(8,94)(9,93)(10,92)(11,91)(12,90)(13,89)(14,88)(15,87)(16,86)(17,85)(18,84)(19,83)(20,82)(21,81)(22,80)(23,79)(24,104)(25,103)(26,102)(27,58)(28,57)(29,56)(30,55)(31,54)(32,53)(33,78)(34,77)(35,76)(36,75)(37,74)(38,73)(39,72)(40,71)(41,70)(42,69)(43,68)(44,67)(45,66)(46,65)(47,64)(48,63)(49,62)(50,61)(51,60)(52,59)(105,157)(106,182)(107,181)(108,180)(109,179)(110,178)(111,177)(112,176)(113,175)(114,174)(115,173)(116,172)(117,171)(118,170)(119,169)(120,168)(121,167)(122,166)(123,165)(124,164)(125,163)(126,162)(127,161)(128,160)(129,159)(130,158)(131,187)(132,186)(133,185)(134,184)(135,183)(136,208)(137,207)(138,206)(139,205)(140,204)(141,203)(142,202)(143,201)(144,200)(145,199)(146,198)(147,197)(148,196)(149,195)(150,194)(151,193)(152,192)(153,191)(154,190)(155,189)(156,188), (1,41,89,58)(2,40,90,57)(3,39,91,56)(4,38,92,55)(5,37,93,54)(6,36,94,53)(7,35,95,78)(8,34,96,77)(9,33,97,76)(10,32,98,75)(11,31,99,74)(12,30,100,73)(13,29,101,72)(14,28,102,71)(15,27,103,70)(16,52,104,69)(17,51,79,68)(18,50,80,67)(19,49,81,66)(20,48,82,65)(21,47,83,64)(22,46,84,63)(23,45,85,62)(24,44,86,61)(25,43,87,60)(26,42,88,59)(105,208,158,137)(106,207,159,136)(107,206,160,135)(108,205,161,134)(109,204,162,133)(110,203,163,132)(111,202,164,131)(112,201,165,156)(113,200,166,155)(114,199,167,154)(115,198,168,153)(116,197,169,152)(117,196,170,151)(118,195,171,150)(119,194,172,149)(120,193,173,148)(121,192,174,147)(122,191,175,146)(123,190,176,145)(124,189,177,144)(125,188,178,143)(126,187,179,142)(127,186,180,141)(128,185,181,140)(129,184,182,139)(130,183,157,138), (1,195)(2,194)(3,193)(4,192)(5,191)(6,190)(7,189)(8,188)(9,187)(10,186)(11,185)(12,184)(13,183)(14,208)(15,207)(16,206)(17,205)(18,204)(19,203)(20,202)(21,201)(22,200)(23,199)(24,198)(25,197)(26,196)(27,106)(28,105)(29,130)(30,129)(31,128)(32,127)(33,126)(34,125)(35,124)(36,123)(37,122)(38,121)(39,120)(40,119)(41,118)(42,117)(43,116)(44,115)(45,114)(46,113)(47,112)(48,111)(49,110)(50,109)(51,108)(52,107)(53,176)(54,175)(55,174)(56,173)(57,172)(58,171)(59,170)(60,169)(61,168)(62,167)(63,166)(64,165)(65,164)(66,163)(67,162)(68,161)(69,160)(70,159)(71,158)(72,157)(73,182)(74,181)(75,180)(76,179)(77,178)(78,177)(79,134)(80,133)(81,132)(82,131)(83,156)(84,155)(85,154)(86,153)(87,152)(88,151)(89,150)(90,149)(91,148)(92,147)(93,146)(94,145)(95,144)(96,143)(97,142)(98,141)(99,140)(100,139)(101,138)(102,137)(103,136)(104,135)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182)(183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208), (1,101)(2,100)(3,99)(4,98)(5,97)(6,96)(7,95)(8,94)(9,93)(10,92)(11,91)(12,90)(13,89)(14,88)(15,87)(16,86)(17,85)(18,84)(19,83)(20,82)(21,81)(22,80)(23,79)(24,104)(25,103)(26,102)(27,58)(28,57)(29,56)(30,55)(31,54)(32,53)(33,78)(34,77)(35,76)(36,75)(37,74)(38,73)(39,72)(40,71)(41,70)(42,69)(43,68)(44,67)(45,66)(46,65)(47,64)(48,63)(49,62)(50,61)(51,60)(52,59)(105,157)(106,182)(107,181)(108,180)(109,179)(110,178)(111,177)(112,176)(113,175)(114,174)(115,173)(116,172)(117,171)(118,170)(119,169)(120,168)(121,167)(122,166)(123,165)(124,164)(125,163)(126,162)(127,161)(128,160)(129,159)(130,158)(131,187)(132,186)(133,185)(134,184)(135,183)(136,208)(137,207)(138,206)(139,205)(140,204)(141,203)(142,202)(143,201)(144,200)(145,199)(146,198)(147,197)(148,196)(149,195)(150,194)(151,193)(152,192)(153,191)(154,190)(155,189)(156,188), (1,41,89,58)(2,40,90,57)(3,39,91,56)(4,38,92,55)(5,37,93,54)(6,36,94,53)(7,35,95,78)(8,34,96,77)(9,33,97,76)(10,32,98,75)(11,31,99,74)(12,30,100,73)(13,29,101,72)(14,28,102,71)(15,27,103,70)(16,52,104,69)(17,51,79,68)(18,50,80,67)(19,49,81,66)(20,48,82,65)(21,47,83,64)(22,46,84,63)(23,45,85,62)(24,44,86,61)(25,43,87,60)(26,42,88,59)(105,208,158,137)(106,207,159,136)(107,206,160,135)(108,205,161,134)(109,204,162,133)(110,203,163,132)(111,202,164,131)(112,201,165,156)(113,200,166,155)(114,199,167,154)(115,198,168,153)(116,197,169,152)(117,196,170,151)(118,195,171,150)(119,194,172,149)(120,193,173,148)(121,192,174,147)(122,191,175,146)(123,190,176,145)(124,189,177,144)(125,188,178,143)(126,187,179,142)(127,186,180,141)(128,185,181,140)(129,184,182,139)(130,183,157,138), (1,195)(2,194)(3,193)(4,192)(5,191)(6,190)(7,189)(8,188)(9,187)(10,186)(11,185)(12,184)(13,183)(14,208)(15,207)(16,206)(17,205)(18,204)(19,203)(20,202)(21,201)(22,200)(23,199)(24,198)(25,197)(26,196)(27,106)(28,105)(29,130)(30,129)(31,128)(32,127)(33,126)(34,125)(35,124)(36,123)(37,122)(38,121)(39,120)(40,119)(41,118)(42,117)(43,116)(44,115)(45,114)(46,113)(47,112)(48,111)(49,110)(50,109)(51,108)(52,107)(53,176)(54,175)(55,174)(56,173)(57,172)(58,171)(59,170)(60,169)(61,168)(62,167)(63,166)(64,165)(65,164)(66,163)(67,162)(68,161)(69,160)(70,159)(71,158)(72,157)(73,182)(74,181)(75,180)(76,179)(77,178)(78,177)(79,134)(80,133)(81,132)(82,131)(83,156)(84,155)(85,154)(86,153)(87,152)(88,151)(89,150)(90,149)(91,148)(92,147)(93,146)(94,145)(95,144)(96,143)(97,142)(98,141)(99,140)(100,139)(101,138)(102,137)(103,136)(104,135) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182),(183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208)], [(1,101),(2,100),(3,99),(4,98),(5,97),(6,96),(7,95),(8,94),(9,93),(10,92),(11,91),(12,90),(13,89),(14,88),(15,87),(16,86),(17,85),(18,84),(19,83),(20,82),(21,81),(22,80),(23,79),(24,104),(25,103),(26,102),(27,58),(28,57),(29,56),(30,55),(31,54),(32,53),(33,78),(34,77),(35,76),(36,75),(37,74),(38,73),(39,72),(40,71),(41,70),(42,69),(43,68),(44,67),(45,66),(46,65),(47,64),(48,63),(49,62),(50,61),(51,60),(52,59),(105,157),(106,182),(107,181),(108,180),(109,179),(110,178),(111,177),(112,176),(113,175),(114,174),(115,173),(116,172),(117,171),(118,170),(119,169),(120,168),(121,167),(122,166),(123,165),(124,164),(125,163),(126,162),(127,161),(128,160),(129,159),(130,158),(131,187),(132,186),(133,185),(134,184),(135,183),(136,208),(137,207),(138,206),(139,205),(140,204),(141,203),(142,202),(143,201),(144,200),(145,199),(146,198),(147,197),(148,196),(149,195),(150,194),(151,193),(152,192),(153,191),(154,190),(155,189),(156,188)], [(1,41,89,58),(2,40,90,57),(3,39,91,56),(4,38,92,55),(5,37,93,54),(6,36,94,53),(7,35,95,78),(8,34,96,77),(9,33,97,76),(10,32,98,75),(11,31,99,74),(12,30,100,73),(13,29,101,72),(14,28,102,71),(15,27,103,70),(16,52,104,69),(17,51,79,68),(18,50,80,67),(19,49,81,66),(20,48,82,65),(21,47,83,64),(22,46,84,63),(23,45,85,62),(24,44,86,61),(25,43,87,60),(26,42,88,59),(105,208,158,137),(106,207,159,136),(107,206,160,135),(108,205,161,134),(109,204,162,133),(110,203,163,132),(111,202,164,131),(112,201,165,156),(113,200,166,155),(114,199,167,154),(115,198,168,153),(116,197,169,152),(117,196,170,151),(118,195,171,150),(119,194,172,149),(120,193,173,148),(121,192,174,147),(122,191,175,146),(123,190,176,145),(124,189,177,144),(125,188,178,143),(126,187,179,142),(127,186,180,141),(128,185,181,140),(129,184,182,139),(130,183,157,138)], [(1,195),(2,194),(3,193),(4,192),(5,191),(6,190),(7,189),(8,188),(9,187),(10,186),(11,185),(12,184),(13,183),(14,208),(15,207),(16,206),(17,205),(18,204),(19,203),(20,202),(21,201),(22,200),(23,199),(24,198),(25,197),(26,196),(27,106),(28,105),(29,130),(30,129),(31,128),(32,127),(33,126),(34,125),(35,124),(36,123),(37,122),(38,121),(39,120),(40,119),(41,118),(42,117),(43,116),(44,115),(45,114),(46,113),(47,112),(48,111),(49,110),(50,109),(51,108),(52,107),(53,176),(54,175),(55,174),(56,173),(57,172),(58,171),(59,170),(60,169),(61,168),(62,167),(63,166),(64,165),(65,164),(66,163),(67,162),(68,161),(69,160),(70,159),(71,158),(72,157),(73,182),(74,181),(75,180),(76,179),(77,178),(78,177),(79,134),(80,133),(81,132),(82,131),(83,156),(84,155),(85,154),(86,153),(87,152),(88,151),(89,150),(90,149),(91,148),(92,147),(93,146),(94,145),(95,144),(96,143),(97,142),(98,141),(99,140),(100,139),(101,138),(102,137),(103,136),(104,135)]])
74 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 13A | ··· | 13F | 26A | ··· | 26R | 26S | ··· | 26AD | 52A | ··· | 52X |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 13 | ··· | 13 | 26 | ··· | 26 | 26 | ··· | 26 | 52 | ··· | 52 |
| size | 1 | 1 | 1 | 1 | 4 | 26 | 26 | 52 | 2 | 2 | 4 | 26 | 26 | 52 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
74 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | D13 | D26 | D26 | D52⋊5C2 | D4×D13 |
| kernel | D26⋊D4 | C26.D4 | D26⋊C4 | C13×C22⋊C4 | C2×C4×D13 | C2×D52 | C2×C13⋊D4 | Dic13 | D26 | C26 | C22⋊C4 | C2×C4 | C23 | C2 | C2 |
| # reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 12 | 6 | 24 | 12 |
Matrix representation of D26⋊D4 ►in GL4(𝔽53) generated by
| 17 | 33 | 0 | 0 |
| 16 | 28 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 41 | 44 | 0 | 0 |
| 10 | 12 | 0 | 0 |
| 0 | 0 | 52 | 0 |
| 0 | 0 | 0 | 52 |
| 17 | 29 | 0 | 0 |
| 43 | 36 | 0 | 0 |
| 0 | 0 | 7 | 38 |
| 0 | 0 | 21 | 46 |
| 41 | 14 | 0 | 0 |
| 39 | 12 | 0 | 0 |
| 0 | 0 | 46 | 25 |
| 0 | 0 | 32 | 7 |
G:=sub<GL(4,GF(53))| [17,16,0,0,33,28,0,0,0,0,1,0,0,0,0,1],[41,10,0,0,44,12,0,0,0,0,52,0,0,0,0,52],[17,43,0,0,29,36,0,0,0,0,7,21,0,0,38,46],[41,39,0,0,14,12,0,0,0,0,46,32,0,0,25,7] >;
D26⋊D4 in GAP, Magma, Sage, TeX
D_{26}\rtimes D_4 % in TeX
G:=Group("D26:D4"); // GroupNames label
G:=SmallGroup(416,105);
// by ID
G=gap.SmallGroup(416,105);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-13,55,506,188,13829]);
// Polycyclic
G:=Group<a,b,c,d|a^26=b^2=c^4=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^24*b,d*b*d=a^11*b,d*c*d=c^-1>;
// generators/relations