direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×C17⋊C4, D51⋊C4, D17.1D6, C17⋊(C4×S3), C51⋊(C2×C4), C51⋊C4⋊C2, (S3×C17)⋊C4, (S3×D17).C2, (C3×D17).C22, (C3×C17⋊C4)⋊C2, C3⋊1(C2×C17⋊C4), SmallGroup(408,35)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C17 — C51 — C3×D17 — C3×C17⋊C4 — S3×C17⋊C4 |
C51 — S3×C17⋊C4 |
Generators and relations for S3×C17⋊C4
G = < a,b,c,d | a3=b2=c17=d4=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
Character table of S3×C17⋊C4
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 6 | 12A | 12B | 17A | 17B | 17C | 17D | 34A | 34B | 34C | 34D | 51A | 51B | 51C | 51D | |
size | 1 | 3 | 17 | 51 | 2 | 17 | 17 | 51 | 51 | 34 | 34 | 34 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | i | -i | -i | i | -1 | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | -i | i | i | -i | -1 | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | i | -i | i | -i | -1 | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | -i | i | -i | i | -1 | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 2 | 0 | 2 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | 1 | 1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 0 | 2 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 0 | -2 | 0 | -1 | -2i | 2i | 0 | 0 | 1 | i | -i | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | complex lifted from C4×S3 |
ρ12 | 2 | 0 | -2 | 0 | -1 | 2i | -2i | 0 | 0 | 1 | -i | i | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | complex lifted from C4×S3 |
ρ13 | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1714+ζ1712+ζ175+ζ173 | ζ1716+ζ1713+ζ174+ζ17 | ζ1711+ζ1710+ζ177+ζ176 | ζ1715+ζ179+ζ178+ζ172 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ1714+ζ1712+ζ175+ζ173 | ζ1716+ζ1713+ζ174+ζ17 | ζ1716+ζ1713+ζ174+ζ17 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ1714+ζ1712+ζ175+ζ173 | orthogonal lifted from C17⋊C4 |
ρ14 | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1715+ζ179+ζ178+ζ172 | ζ1714+ζ1712+ζ175+ζ173 | ζ1716+ζ1713+ζ174+ζ17 | ζ1711+ζ1710+ζ177+ζ176 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ1715+ζ179+ζ178+ζ172 | ζ1714+ζ1712+ζ175+ζ173 | ζ1714+ζ1712+ζ175+ζ173 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ1715+ζ179+ζ178+ζ172 | orthogonal lifted from C17⋊C4 |
ρ15 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1714+ζ1712+ζ175+ζ173 | ζ1716+ζ1713+ζ174+ζ17 | ζ1711+ζ1710+ζ177+ζ176 | ζ1715+ζ179+ζ178+ζ172 | -ζ1715-ζ179-ζ178-ζ172 | -ζ1711-ζ1710-ζ177-ζ176 | -ζ1714-ζ1712-ζ175-ζ173 | -ζ1716-ζ1713-ζ174-ζ17 | ζ1716+ζ1713+ζ174+ζ17 | ζ1715+ζ179+ζ178+ζ172 | ζ1711+ζ1710+ζ177+ζ176 | ζ1714+ζ1712+ζ175+ζ173 | orthogonal lifted from C2×C17⋊C4 |
ρ16 | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1711+ζ1710+ζ177+ζ176 | ζ1715+ζ179+ζ178+ζ172 | ζ1714+ζ1712+ζ175+ζ173 | ζ1716+ζ1713+ζ174+ζ17 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ1711+ζ1710+ζ177+ζ176 | ζ1715+ζ179+ζ178+ζ172 | ζ1715+ζ179+ζ178+ζ172 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ1711+ζ1710+ζ177+ζ176 | orthogonal lifted from C17⋊C4 |
ρ17 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1715+ζ179+ζ178+ζ172 | ζ1714+ζ1712+ζ175+ζ173 | ζ1716+ζ1713+ζ174+ζ17 | ζ1711+ζ1710+ζ177+ζ176 | -ζ1711-ζ1710-ζ177-ζ176 | -ζ1716-ζ1713-ζ174-ζ17 | -ζ1715-ζ179-ζ178-ζ172 | -ζ1714-ζ1712-ζ175-ζ173 | ζ1714+ζ1712+ζ175+ζ173 | ζ1711+ζ1710+ζ177+ζ176 | ζ1716+ζ1713+ζ174+ζ17 | ζ1715+ζ179+ζ178+ζ172 | orthogonal lifted from C2×C17⋊C4 |
ρ18 | 4 | 4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1716+ζ1713+ζ174+ζ17 | ζ1711+ζ1710+ζ177+ζ176 | ζ1715+ζ179+ζ178+ζ172 | ζ1714+ζ1712+ζ175+ζ173 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ1716+ζ1713+ζ174+ζ17 | ζ1711+ζ1710+ζ177+ζ176 | ζ1711+ζ1710+ζ177+ζ176 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ1716+ζ1713+ζ174+ζ17 | orthogonal lifted from C17⋊C4 |
ρ19 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1716+ζ1713+ζ174+ζ17 | ζ1711+ζ1710+ζ177+ζ176 | ζ1715+ζ179+ζ178+ζ172 | ζ1714+ζ1712+ζ175+ζ173 | -ζ1714-ζ1712-ζ175-ζ173 | -ζ1715-ζ179-ζ178-ζ172 | -ζ1716-ζ1713-ζ174-ζ17 | -ζ1711-ζ1710-ζ177-ζ176 | ζ1711+ζ1710+ζ177+ζ176 | ζ1714+ζ1712+ζ175+ζ173 | ζ1715+ζ179+ζ178+ζ172 | ζ1716+ζ1713+ζ174+ζ17 | orthogonal lifted from C2×C17⋊C4 |
ρ20 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1711+ζ1710+ζ177+ζ176 | ζ1715+ζ179+ζ178+ζ172 | ζ1714+ζ1712+ζ175+ζ173 | ζ1716+ζ1713+ζ174+ζ17 | -ζ1716-ζ1713-ζ174-ζ17 | -ζ1714-ζ1712-ζ175-ζ173 | -ζ1711-ζ1710-ζ177-ζ176 | -ζ1715-ζ179-ζ178-ζ172 | ζ1715+ζ179+ζ178+ζ172 | ζ1716+ζ1713+ζ174+ζ17 | ζ1714+ζ1712+ζ175+ζ173 | ζ1711+ζ1710+ζ177+ζ176 | orthogonal lifted from C2×C17⋊C4 |
ρ21 | 8 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ1711+2ζ1710+2ζ177+2ζ176 | 2ζ1715+2ζ179+2ζ178+2ζ172 | 2ζ1714+2ζ1712+2ζ175+2ζ173 | 2ζ1716+2ζ1713+2ζ174+2ζ17 | 0 | 0 | 0 | 0 | -ζ1715-ζ179-ζ178-ζ172 | -ζ1716-ζ1713-ζ174-ζ17 | -ζ1714-ζ1712-ζ175-ζ173 | -ζ1711-ζ1710-ζ177-ζ176 | orthogonal faithful |
ρ22 | 8 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ1715+2ζ179+2ζ178+2ζ172 | 2ζ1714+2ζ1712+2ζ175+2ζ173 | 2ζ1716+2ζ1713+2ζ174+2ζ17 | 2ζ1711+2ζ1710+2ζ177+2ζ176 | 0 | 0 | 0 | 0 | -ζ1714-ζ1712-ζ175-ζ173 | -ζ1711-ζ1710-ζ177-ζ176 | -ζ1716-ζ1713-ζ174-ζ17 | -ζ1715-ζ179-ζ178-ζ172 | orthogonal faithful |
ρ23 | 8 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ1714+2ζ1712+2ζ175+2ζ173 | 2ζ1716+2ζ1713+2ζ174+2ζ17 | 2ζ1711+2ζ1710+2ζ177+2ζ176 | 2ζ1715+2ζ179+2ζ178+2ζ172 | 0 | 0 | 0 | 0 | -ζ1716-ζ1713-ζ174-ζ17 | -ζ1715-ζ179-ζ178-ζ172 | -ζ1711-ζ1710-ζ177-ζ176 | -ζ1714-ζ1712-ζ175-ζ173 | orthogonal faithful |
ρ24 | 8 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ1716+2ζ1713+2ζ174+2ζ17 | 2ζ1711+2ζ1710+2ζ177+2ζ176 | 2ζ1715+2ζ179+2ζ178+2ζ172 | 2ζ1714+2ζ1712+2ζ175+2ζ173 | 0 | 0 | 0 | 0 | -ζ1711-ζ1710-ζ177-ζ176 | -ζ1714-ζ1712-ζ175-ζ173 | -ζ1715-ζ179-ζ178-ζ172 | -ζ1716-ζ1713-ζ174-ζ17 | orthogonal faithful |
(1 18 35)(2 19 36)(3 20 37)(4 21 38)(5 22 39)(6 23 40)(7 24 41)(8 25 42)(9 26 43)(10 27 44)(11 28 45)(12 29 46)(13 30 47)(14 31 48)(15 32 49)(16 33 50)(17 34 51)
(18 35)(19 36)(20 37)(21 38)(22 39)(23 40)(24 41)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 49)(33 50)(34 51)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)
(2 14 17 5)(3 10 16 9)(4 6 15 13)(7 11 12 8)(19 31 34 22)(20 27 33 26)(21 23 32 30)(24 28 29 25)(36 48 51 39)(37 44 50 43)(38 40 49 47)(41 45 46 42)
G:=sub<Sym(51)| (1,18,35)(2,19,36)(3,20,37)(4,21,38)(5,22,39)(6,23,40)(7,24,41)(8,25,42)(9,26,43)(10,27,44)(11,28,45)(12,29,46)(13,30,47)(14,31,48)(15,32,49)(16,33,50)(17,34,51), (18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (2,14,17,5)(3,10,16,9)(4,6,15,13)(7,11,12,8)(19,31,34,22)(20,27,33,26)(21,23,32,30)(24,28,29,25)(36,48,51,39)(37,44,50,43)(38,40,49,47)(41,45,46,42)>;
G:=Group( (1,18,35)(2,19,36)(3,20,37)(4,21,38)(5,22,39)(6,23,40)(7,24,41)(8,25,42)(9,26,43)(10,27,44)(11,28,45)(12,29,46)(13,30,47)(14,31,48)(15,32,49)(16,33,50)(17,34,51), (18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (2,14,17,5)(3,10,16,9)(4,6,15,13)(7,11,12,8)(19,31,34,22)(20,27,33,26)(21,23,32,30)(24,28,29,25)(36,48,51,39)(37,44,50,43)(38,40,49,47)(41,45,46,42) );
G=PermutationGroup([[(1,18,35),(2,19,36),(3,20,37),(4,21,38),(5,22,39),(6,23,40),(7,24,41),(8,25,42),(9,26,43),(10,27,44),(11,28,45),(12,29,46),(13,30,47),(14,31,48),(15,32,49),(16,33,50),(17,34,51)], [(18,35),(19,36),(20,37),(21,38),(22,39),(23,40),(24,41),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,49),(33,50),(34,51)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)], [(2,14,17,5),(3,10,16,9),(4,6,15,13),(7,11,12,8),(19,31,34,22),(20,27,33,26),(21,23,32,30),(24,28,29,25),(36,48,51,39),(37,44,50,43),(38,40,49,47),(41,45,46,42)]])
Matrix representation of S3×C17⋊C4 ►in GL6(𝔽409)
407 | 329 | 0 | 0 | 0 | 0 |
271 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
138 | 408 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 72 | 17 | 408 |
0 | 0 | 330 | 89 | 288 | 368 |
0 | 0 | 365 | 234 | 322 | 366 |
0 | 0 | 383 | 305 | 340 | 365 |
143 | 0 | 0 | 0 | 0 | 0 |
0 | 143 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 4 | 53 | 162 |
0 | 0 | 0 | 208 | 388 | 129 |
0 | 0 | 31 | 62 | 373 | 113 |
0 | 0 | 63 | 22 | 153 | 219 |
G:=sub<GL(6,GF(409))| [407,271,0,0,0,0,329,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,138,0,0,0,0,0,408,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,330,365,383,0,0,72,89,234,305,0,0,17,288,322,340,0,0,408,368,366,365],[143,0,0,0,0,0,0,143,0,0,0,0,0,0,18,0,31,63,0,0,4,208,62,22,0,0,53,388,373,153,0,0,162,129,113,219] >;
S3×C17⋊C4 in GAP, Magma, Sage, TeX
S_3\times C_{17}\rtimes C_4
% in TeX
G:=Group("S3xC17:C4");
// GroupNames label
G:=SmallGroup(408,35);
// by ID
G=gap.SmallGroup(408,35);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-17,20,168,7804,2414]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^17=d^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations
Export
Subgroup lattice of S3×C17⋊C4 in TeX
Character table of S3×C17⋊C4 in TeX