Copied to
clipboard

G = S3×C17⋊C4order 408 = 23·3·17

Direct product of S3 and C17⋊C4

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C17⋊C4, D51⋊C4, D17.1D6, C17⋊(C4×S3), C51⋊(C2×C4), C51⋊C4⋊C2, (S3×C17)⋊C4, (S3×D17).C2, (C3×D17).C22, (C3×C17⋊C4)⋊C2, C31(C2×C17⋊C4), SmallGroup(408,35)

Series: Derived Chief Lower central Upper central

C1C51 — S3×C17⋊C4
C1C17C51C3×D17C3×C17⋊C4 — S3×C17⋊C4
C51 — S3×C17⋊C4
C1

Generators and relations for S3×C17⋊C4
 G = < a,b,c,d | a3=b2=c17=d4=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

3C2
17C2
51C2
17C4
51C4
51C22
17S3
17C6
3C34
3D17
51C2×C4
17C12
17Dic3
17D6
3C17⋊C4
3D34
17C4×S3
3C2×C17⋊C4

Character table of S3×C17⋊C4

 class 12A2B2C34A4B4C4D612A12B17A17B17C17D34A34B34C34D51A51B51C51D
 size 1317512171751513434344444121212128888
ρ1111111111111111111111111    trivial
ρ211111-1-1-1-11-1-1111111111111    linear of order 2
ρ31-11-1111-1-11111111-1-1-1-11111    linear of order 2
ρ41-11-11-1-1111-1-11111-1-1-1-11111    linear of order 2
ρ51-1-111i-i-ii-1i-i1111-1-1-1-11111    linear of order 4
ρ61-1-111-iii-i-1-ii1111-1-1-1-11111    linear of order 4
ρ711-1-11i-ii-i-1i-i111111111111    linear of order 4
ρ811-1-11-ii-ii-1-ii111111111111    linear of order 4
ρ92020-1-2-200-11122220000-1-1-1-1    orthogonal lifted from D6
ρ102020-12200-1-1-122220000-1-1-1-1    orthogonal lifted from S3
ρ1120-20-1-2i2i001i-i22220000-1-1-1-1    complex lifted from C4×S3
ρ1220-20-12i-2i001-ii22220000-1-1-1-1    complex lifted from C4×S3
ρ13440040000000ζ17141712175173ζ1716171317417ζ17111710177176ζ1715179178172ζ1715179178172ζ17111710177176ζ17141712175173ζ1716171317417ζ1716171317417ζ1715179178172ζ17111710177176ζ17141712175173    orthogonal lifted from C17⋊C4
ρ14440040000000ζ1715179178172ζ17141712175173ζ1716171317417ζ17111710177176ζ17111710177176ζ1716171317417ζ1715179178172ζ17141712175173ζ17141712175173ζ17111710177176ζ1716171317417ζ1715179178172    orthogonal lifted from C17⋊C4
ρ154-40040000000ζ17141712175173ζ1716171317417ζ17111710177176ζ1715179178172171517917817217111710177176171417121751731716171317417ζ1716171317417ζ1715179178172ζ17111710177176ζ17141712175173    orthogonal lifted from C2×C17⋊C4
ρ16440040000000ζ17111710177176ζ1715179178172ζ17141712175173ζ1716171317417ζ1716171317417ζ17141712175173ζ17111710177176ζ1715179178172ζ1715179178172ζ1716171317417ζ17141712175173ζ17111710177176    orthogonal lifted from C17⋊C4
ρ174-40040000000ζ1715179178172ζ17141712175173ζ1716171317417ζ17111710177176171117101771761716171317417171517917817217141712175173ζ17141712175173ζ17111710177176ζ1716171317417ζ1715179178172    orthogonal lifted from C2×C17⋊C4
ρ18440040000000ζ1716171317417ζ17111710177176ζ1715179178172ζ17141712175173ζ17141712175173ζ1715179178172ζ1716171317417ζ17111710177176ζ17111710177176ζ17141712175173ζ1715179178172ζ1716171317417    orthogonal lifted from C17⋊C4
ρ194-40040000000ζ1716171317417ζ17111710177176ζ1715179178172ζ17141712175173171417121751731715179178172171617131741717111710177176ζ17111710177176ζ17141712175173ζ1715179178172ζ1716171317417    orthogonal lifted from C2×C17⋊C4
ρ204-40040000000ζ17111710177176ζ1715179178172ζ17141712175173ζ1716171317417171617131741717141712175173171117101771761715179178172ζ1715179178172ζ1716171317417ζ17141712175173ζ17111710177176    orthogonal lifted from C2×C17⋊C4
ρ218000-400000001711+2ζ1710+2ζ177+2ζ1761715+2ζ179+2ζ178+2ζ1721714+2ζ1712+2ζ175+2ζ1731716+2ζ1713+2ζ174+2ζ170000171517917817217161713174171714171217517317111710177176    orthogonal faithful
ρ228000-400000001715+2ζ179+2ζ178+2ζ1721714+2ζ1712+2ζ175+2ζ1731716+2ζ1713+2ζ174+2ζ171711+2ζ1710+2ζ177+2ζ1760000171417121751731711171017717617161713174171715179178172    orthogonal faithful
ρ238000-400000001714+2ζ1712+2ζ175+2ζ1731716+2ζ1713+2ζ174+2ζ171711+2ζ1710+2ζ177+2ζ1761715+2ζ179+2ζ178+2ζ1720000171617131741717151791781721711171017717617141712175173    orthogonal faithful
ρ248000-400000001716+2ζ1713+2ζ174+2ζ171711+2ζ1710+2ζ177+2ζ1761715+2ζ179+2ζ178+2ζ1721714+2ζ1712+2ζ175+2ζ1730000171117101771761714171217517317151791781721716171317417    orthogonal faithful

Smallest permutation representation of S3×C17⋊C4
On 51 points
Generators in S51
(1 18 35)(2 19 36)(3 20 37)(4 21 38)(5 22 39)(6 23 40)(7 24 41)(8 25 42)(9 26 43)(10 27 44)(11 28 45)(12 29 46)(13 30 47)(14 31 48)(15 32 49)(16 33 50)(17 34 51)
(18 35)(19 36)(20 37)(21 38)(22 39)(23 40)(24 41)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 49)(33 50)(34 51)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)
(2 14 17 5)(3 10 16 9)(4 6 15 13)(7 11 12 8)(19 31 34 22)(20 27 33 26)(21 23 32 30)(24 28 29 25)(36 48 51 39)(37 44 50 43)(38 40 49 47)(41 45 46 42)

G:=sub<Sym(51)| (1,18,35)(2,19,36)(3,20,37)(4,21,38)(5,22,39)(6,23,40)(7,24,41)(8,25,42)(9,26,43)(10,27,44)(11,28,45)(12,29,46)(13,30,47)(14,31,48)(15,32,49)(16,33,50)(17,34,51), (18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (2,14,17,5)(3,10,16,9)(4,6,15,13)(7,11,12,8)(19,31,34,22)(20,27,33,26)(21,23,32,30)(24,28,29,25)(36,48,51,39)(37,44,50,43)(38,40,49,47)(41,45,46,42)>;

G:=Group( (1,18,35)(2,19,36)(3,20,37)(4,21,38)(5,22,39)(6,23,40)(7,24,41)(8,25,42)(9,26,43)(10,27,44)(11,28,45)(12,29,46)(13,30,47)(14,31,48)(15,32,49)(16,33,50)(17,34,51), (18,35)(19,36)(20,37)(21,38)(22,39)(23,40)(24,41)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,49)(33,50)(34,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51), (2,14,17,5)(3,10,16,9)(4,6,15,13)(7,11,12,8)(19,31,34,22)(20,27,33,26)(21,23,32,30)(24,28,29,25)(36,48,51,39)(37,44,50,43)(38,40,49,47)(41,45,46,42) );

G=PermutationGroup([[(1,18,35),(2,19,36),(3,20,37),(4,21,38),(5,22,39),(6,23,40),(7,24,41),(8,25,42),(9,26,43),(10,27,44),(11,28,45),(12,29,46),(13,30,47),(14,31,48),(15,32,49),(16,33,50),(17,34,51)], [(18,35),(19,36),(20,37),(21,38),(22,39),(23,40),(24,41),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,49),(33,50),(34,51)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)], [(2,14,17,5),(3,10,16,9),(4,6,15,13),(7,11,12,8),(19,31,34,22),(20,27,33,26),(21,23,32,30),(24,28,29,25),(36,48,51,39),(37,44,50,43),(38,40,49,47),(41,45,46,42)]])

Matrix representation of S3×C17⋊C4 in GL6(𝔽409)

4073290000
27110000
001000
000100
000010
000001
,
100000
1384080000
001000
000100
000010
000001
,
100000
010000
00187217408
0033089288368
00365234322366
00383305340365
,
14300000
01430000
0018453162
000208388129
003162373113
006322153219

G:=sub<GL(6,GF(409))| [407,271,0,0,0,0,329,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,138,0,0,0,0,0,408,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,18,330,365,383,0,0,72,89,234,305,0,0,17,288,322,340,0,0,408,368,366,365],[143,0,0,0,0,0,0,143,0,0,0,0,0,0,18,0,31,63,0,0,4,208,62,22,0,0,53,388,373,153,0,0,162,129,113,219] >;

S3×C17⋊C4 in GAP, Magma, Sage, TeX

S_3\times C_{17}\rtimes C_4
% in TeX

G:=Group("S3xC17:C4");
// GroupNames label

G:=SmallGroup(408,35);
// by ID

G=gap.SmallGroup(408,35);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-17,20,168,7804,2414]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^17=d^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of S3×C17⋊C4 in TeX
Character table of S3×C17⋊C4 in TeX

׿
×
𝔽