Copied to
clipboard

G = C2×C10×C7⋊C3order 420 = 22·3·5·7

Direct product of C2×C10 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×C10×C7⋊C3, C704C6, C142C30, (C2×C70)⋊3C3, C356(C2×C6), C72(C2×C30), (C2×C14)⋊3C15, SmallGroup(420,31)

Series: Derived Chief Lower central Upper central

C1C7 — C2×C10×C7⋊C3
C1C7C35C5×C7⋊C3C10×C7⋊C3 — C2×C10×C7⋊C3
C7 — C2×C10×C7⋊C3
C1C2×C10

Generators and relations for C2×C10×C7⋊C3
 G = < a,b,c,d | a2=b10=c7=d3=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

7C3
7C6
7C6
7C6
7C15
7C2×C6
7C30
7C30
7C30
7C2×C30

Smallest permutation representation of C2×C10×C7⋊C3
On 140 points
Generators in S140
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 31)(8 32)(9 33)(10 34)(11 101)(12 102)(13 103)(14 104)(15 105)(16 106)(17 107)(18 108)(19 109)(20 110)(21 79)(22 80)(23 71)(24 72)(25 73)(26 74)(27 75)(28 76)(29 77)(30 78)(41 85)(42 86)(43 87)(44 88)(45 89)(46 90)(47 81)(48 82)(49 83)(50 84)(51 129)(52 130)(53 121)(54 122)(55 123)(56 124)(57 125)(58 126)(59 127)(60 128)(61 116)(62 117)(63 118)(64 119)(65 120)(66 111)(67 112)(68 113)(69 114)(70 115)(91 137)(92 138)(93 139)(94 140)(95 131)(96 132)(97 133)(98 134)(99 135)(100 136)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)
(1 117 96 78 110 129 87)(2 118 97 79 101 130 88)(3 119 98 80 102 121 89)(4 120 99 71 103 122 90)(5 111 100 72 104 123 81)(6 112 91 73 105 124 82)(7 113 92 74 106 125 83)(8 114 93 75 107 126 84)(9 115 94 76 108 127 85)(10 116 95 77 109 128 86)(11 52 44 36 63 133 21)(12 53 45 37 64 134 22)(13 54 46 38 65 135 23)(14 55 47 39 66 136 24)(15 56 48 40 67 137 25)(16 57 49 31 68 138 26)(17 58 50 32 69 139 27)(18 59 41 33 70 140 28)(19 60 42 34 61 131 29)(20 51 43 35 62 132 30)
(11 63 133)(12 64 134)(13 65 135)(14 66 136)(15 67 137)(16 68 138)(17 69 139)(18 70 140)(19 61 131)(20 62 132)(21 44 52)(22 45 53)(23 46 54)(24 47 55)(25 48 56)(26 49 57)(27 50 58)(28 41 59)(29 42 60)(30 43 51)(71 90 122)(72 81 123)(73 82 124)(74 83 125)(75 84 126)(76 85 127)(77 86 128)(78 87 129)(79 88 130)(80 89 121)(91 105 112)(92 106 113)(93 107 114)(94 108 115)(95 109 116)(96 110 117)(97 101 118)(98 102 119)(99 103 120)(100 104 111)

G:=sub<Sym(140)| (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,31)(8,32)(9,33)(10,34)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,79)(22,80)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(41,85)(42,86)(43,87)(44,88)(45,89)(46,90)(47,81)(48,82)(49,83)(50,84)(51,129)(52,130)(53,121)(54,122)(55,123)(56,124)(57,125)(58,126)(59,127)(60,128)(61,116)(62,117)(63,118)(64,119)(65,120)(66,111)(67,112)(68,113)(69,114)(70,115)(91,137)(92,138)(93,139)(94,140)(95,131)(96,132)(97,133)(98,134)(99,135)(100,136), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140), (1,117,96,78,110,129,87)(2,118,97,79,101,130,88)(3,119,98,80,102,121,89)(4,120,99,71,103,122,90)(5,111,100,72,104,123,81)(6,112,91,73,105,124,82)(7,113,92,74,106,125,83)(8,114,93,75,107,126,84)(9,115,94,76,108,127,85)(10,116,95,77,109,128,86)(11,52,44,36,63,133,21)(12,53,45,37,64,134,22)(13,54,46,38,65,135,23)(14,55,47,39,66,136,24)(15,56,48,40,67,137,25)(16,57,49,31,68,138,26)(17,58,50,32,69,139,27)(18,59,41,33,70,140,28)(19,60,42,34,61,131,29)(20,51,43,35,62,132,30), (11,63,133)(12,64,134)(13,65,135)(14,66,136)(15,67,137)(16,68,138)(17,69,139)(18,70,140)(19,61,131)(20,62,132)(21,44,52)(22,45,53)(23,46,54)(24,47,55)(25,48,56)(26,49,57)(27,50,58)(28,41,59)(29,42,60)(30,43,51)(71,90,122)(72,81,123)(73,82,124)(74,83,125)(75,84,126)(76,85,127)(77,86,128)(78,87,129)(79,88,130)(80,89,121)(91,105,112)(92,106,113)(93,107,114)(94,108,115)(95,109,116)(96,110,117)(97,101,118)(98,102,119)(99,103,120)(100,104,111)>;

G:=Group( (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,31)(8,32)(9,33)(10,34)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,79)(22,80)(23,71)(24,72)(25,73)(26,74)(27,75)(28,76)(29,77)(30,78)(41,85)(42,86)(43,87)(44,88)(45,89)(46,90)(47,81)(48,82)(49,83)(50,84)(51,129)(52,130)(53,121)(54,122)(55,123)(56,124)(57,125)(58,126)(59,127)(60,128)(61,116)(62,117)(63,118)(64,119)(65,120)(66,111)(67,112)(68,113)(69,114)(70,115)(91,137)(92,138)(93,139)(94,140)(95,131)(96,132)(97,133)(98,134)(99,135)(100,136), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140), (1,117,96,78,110,129,87)(2,118,97,79,101,130,88)(3,119,98,80,102,121,89)(4,120,99,71,103,122,90)(5,111,100,72,104,123,81)(6,112,91,73,105,124,82)(7,113,92,74,106,125,83)(8,114,93,75,107,126,84)(9,115,94,76,108,127,85)(10,116,95,77,109,128,86)(11,52,44,36,63,133,21)(12,53,45,37,64,134,22)(13,54,46,38,65,135,23)(14,55,47,39,66,136,24)(15,56,48,40,67,137,25)(16,57,49,31,68,138,26)(17,58,50,32,69,139,27)(18,59,41,33,70,140,28)(19,60,42,34,61,131,29)(20,51,43,35,62,132,30), (11,63,133)(12,64,134)(13,65,135)(14,66,136)(15,67,137)(16,68,138)(17,69,139)(18,70,140)(19,61,131)(20,62,132)(21,44,52)(22,45,53)(23,46,54)(24,47,55)(25,48,56)(26,49,57)(27,50,58)(28,41,59)(29,42,60)(30,43,51)(71,90,122)(72,81,123)(73,82,124)(74,83,125)(75,84,126)(76,85,127)(77,86,128)(78,87,129)(79,88,130)(80,89,121)(91,105,112)(92,106,113)(93,107,114)(94,108,115)(95,109,116)(96,110,117)(97,101,118)(98,102,119)(99,103,120)(100,104,111) );

G=PermutationGroup([[(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,31),(8,32),(9,33),(10,34),(11,101),(12,102),(13,103),(14,104),(15,105),(16,106),(17,107),(18,108),(19,109),(20,110),(21,79),(22,80),(23,71),(24,72),(25,73),(26,74),(27,75),(28,76),(29,77),(30,78),(41,85),(42,86),(43,87),(44,88),(45,89),(46,90),(47,81),(48,82),(49,83),(50,84),(51,129),(52,130),(53,121),(54,122),(55,123),(56,124),(57,125),(58,126),(59,127),(60,128),(61,116),(62,117),(63,118),(64,119),(65,120),(66,111),(67,112),(68,113),(69,114),(70,115),(91,137),(92,138),(93,139),(94,140),(95,131),(96,132),(97,133),(98,134),(99,135),(100,136)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140)], [(1,117,96,78,110,129,87),(2,118,97,79,101,130,88),(3,119,98,80,102,121,89),(4,120,99,71,103,122,90),(5,111,100,72,104,123,81),(6,112,91,73,105,124,82),(7,113,92,74,106,125,83),(8,114,93,75,107,126,84),(9,115,94,76,108,127,85),(10,116,95,77,109,128,86),(11,52,44,36,63,133,21),(12,53,45,37,64,134,22),(13,54,46,38,65,135,23),(14,55,47,39,66,136,24),(15,56,48,40,67,137,25),(16,57,49,31,68,138,26),(17,58,50,32,69,139,27),(18,59,41,33,70,140,28),(19,60,42,34,61,131,29),(20,51,43,35,62,132,30)], [(11,63,133),(12,64,134),(13,65,135),(14,66,136),(15,67,137),(16,68,138),(17,69,139),(18,70,140),(19,61,131),(20,62,132),(21,44,52),(22,45,53),(23,46,54),(24,47,55),(25,48,56),(26,49,57),(27,50,58),(28,41,59),(29,42,60),(30,43,51),(71,90,122),(72,81,123),(73,82,124),(74,83,125),(75,84,126),(76,85,127),(77,86,128),(78,87,129),(79,88,130),(80,89,121),(91,105,112),(92,106,113),(93,107,114),(94,108,115),(95,109,116),(96,110,117),(97,101,118),(98,102,119),(99,103,120),(100,104,111)]])

100 conjugacy classes

class 1 2A2B2C3A3B5A5B5C5D6A···6F7A7B10A···10L14A···14F15A···15H30A···30X35A···35H70A···70X
order12223355556···67710···1014···1415···1530···3035···3570···70
size11117711117···7331···13···37···77···73···33···3

100 irreducible representations

dim111111113333
type++
imageC1C2C3C5C6C10C15C30C7⋊C3C2×C7⋊C3C5×C7⋊C3C10×C7⋊C3
kernelC2×C10×C7⋊C3C10×C7⋊C3C2×C70C22×C7⋊C3C70C2×C7⋊C3C2×C14C14C2×C10C10C22C2
# reps132461282426824

Matrix representation of C2×C10×C7⋊C3 in GL4(𝔽211) generated by

1000
021000
002100
000210
,
210000
02300
00230
00023
,
1000
02101901
001901
02101911
,
196000
0191121
0100
01120
G:=sub<GL(4,GF(211))| [1,0,0,0,0,210,0,0,0,0,210,0,0,0,0,210],[210,0,0,0,0,23,0,0,0,0,23,0,0,0,0,23],[1,0,0,0,0,210,0,210,0,190,190,191,0,1,1,1],[196,0,0,0,0,191,1,1,0,1,0,1,0,21,0,20] >;

C2×C10×C7⋊C3 in GAP, Magma, Sage, TeX

C_2\times C_{10}\times C_7\rtimes C_3
% in TeX

G:=Group("C2xC10xC7:C3");
// GroupNames label

G:=SmallGroup(420,31);
// by ID

G=gap.SmallGroup(420,31);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-7,764]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^10=c^7=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of C2×C10×C7⋊C3 in TeX

׿
×
𝔽