Copied to
clipboard

G = D15⋊D7order 420 = 22·3·5·7

The semidirect product of D15 and D7 acting via D7/C7=C2

metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D15⋊D7, D35⋊S3, D21⋊D5, C353D6, C153D14, C213D10, C1054C22, C53(S3×D7), C33(D5×D7), C73(S3×D5), (C7×D15)⋊2C2, (C5×D21)⋊2C2, (C3×D35)⋊2C2, SmallGroup(420,30)

Series: Derived Chief Lower central Upper central

C1C105 — D15⋊D7
C1C7C35C105C5×D21 — D15⋊D7
C105 — D15⋊D7
C1

Generators and relations for D15⋊D7
 G = < a,b,c,d | a21=b2=c5=d2=1, bab=a-1, ac=ca, dad=a8, bc=cb, dbd=a7b, dcd=c-1 >

15C2
21C2
35C2
105C22
5S3
7S3
35C6
3D5
7D5
21C10
3D7
5D7
15C14
35D6
21D10
15D14
7C3×D5
7C5×S3
5C3×D7
5S3×C7
3C5×D7
3C7×D5
7S3×D5
5S3×D7
3D5×D7

Smallest permutation representation of D15⋊D7
On 105 points
Generators in S105
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(22 40)(23 39)(24 38)(25 37)(26 36)(27 35)(28 34)(29 33)(30 32)(41 42)(43 50)(44 49)(45 48)(46 47)(51 63)(52 62)(53 61)(54 60)(55 59)(56 58)(64 66)(67 84)(68 83)(69 82)(70 81)(71 80)(72 79)(73 78)(74 77)(75 76)(86 105)(87 104)(88 103)(89 102)(90 101)(91 100)(92 99)(93 98)(94 97)(95 96)
(1 47 42 96 76)(2 48 22 97 77)(3 49 23 98 78)(4 50 24 99 79)(5 51 25 100 80)(6 52 26 101 81)(7 53 27 102 82)(8 54 28 103 83)(9 55 29 104 84)(10 56 30 105 64)(11 57 31 85 65)(12 58 32 86 66)(13 59 33 87 67)(14 60 34 88 68)(15 61 35 89 69)(16 62 36 90 70)(17 63 37 91 71)(18 43 38 92 72)(19 44 39 93 73)(20 45 40 94 74)(21 46 41 95 75)
(1 76)(2 84)(3 71)(4 79)(5 66)(6 74)(7 82)(8 69)(9 77)(10 64)(11 72)(12 80)(13 67)(14 75)(15 83)(16 70)(17 78)(18 65)(19 73)(20 81)(21 68)(22 29)(23 37)(25 32)(26 40)(28 35)(31 38)(34 41)(43 85)(44 93)(45 101)(46 88)(47 96)(48 104)(49 91)(50 99)(51 86)(52 94)(53 102)(54 89)(55 97)(56 105)(57 92)(58 100)(59 87)(60 95)(61 103)(62 90)(63 98)

G:=sub<Sym(105)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(41,42)(43,50)(44,49)(45,48)(46,47)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58)(64,66)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(86,105)(87,104)(88,103)(89,102)(90,101)(91,100)(92,99)(93,98)(94,97)(95,96), (1,47,42,96,76)(2,48,22,97,77)(3,49,23,98,78)(4,50,24,99,79)(5,51,25,100,80)(6,52,26,101,81)(7,53,27,102,82)(8,54,28,103,83)(9,55,29,104,84)(10,56,30,105,64)(11,57,31,85,65)(12,58,32,86,66)(13,59,33,87,67)(14,60,34,88,68)(15,61,35,89,69)(16,62,36,90,70)(17,63,37,91,71)(18,43,38,92,72)(19,44,39,93,73)(20,45,40,94,74)(21,46,41,95,75), (1,76)(2,84)(3,71)(4,79)(5,66)(6,74)(7,82)(8,69)(9,77)(10,64)(11,72)(12,80)(13,67)(14,75)(15,83)(16,70)(17,78)(18,65)(19,73)(20,81)(21,68)(22,29)(23,37)(25,32)(26,40)(28,35)(31,38)(34,41)(43,85)(44,93)(45,101)(46,88)(47,96)(48,104)(49,91)(50,99)(51,86)(52,94)(53,102)(54,89)(55,97)(56,105)(57,92)(58,100)(59,87)(60,95)(61,103)(62,90)(63,98)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(41,42)(43,50)(44,49)(45,48)(46,47)(51,63)(52,62)(53,61)(54,60)(55,59)(56,58)(64,66)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(86,105)(87,104)(88,103)(89,102)(90,101)(91,100)(92,99)(93,98)(94,97)(95,96), (1,47,42,96,76)(2,48,22,97,77)(3,49,23,98,78)(4,50,24,99,79)(5,51,25,100,80)(6,52,26,101,81)(7,53,27,102,82)(8,54,28,103,83)(9,55,29,104,84)(10,56,30,105,64)(11,57,31,85,65)(12,58,32,86,66)(13,59,33,87,67)(14,60,34,88,68)(15,61,35,89,69)(16,62,36,90,70)(17,63,37,91,71)(18,43,38,92,72)(19,44,39,93,73)(20,45,40,94,74)(21,46,41,95,75), (1,76)(2,84)(3,71)(4,79)(5,66)(6,74)(7,82)(8,69)(9,77)(10,64)(11,72)(12,80)(13,67)(14,75)(15,83)(16,70)(17,78)(18,65)(19,73)(20,81)(21,68)(22,29)(23,37)(25,32)(26,40)(28,35)(31,38)(34,41)(43,85)(44,93)(45,101)(46,88)(47,96)(48,104)(49,91)(50,99)(51,86)(52,94)(53,102)(54,89)(55,97)(56,105)(57,92)(58,100)(59,87)(60,95)(61,103)(62,90)(63,98) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(22,40),(23,39),(24,38),(25,37),(26,36),(27,35),(28,34),(29,33),(30,32),(41,42),(43,50),(44,49),(45,48),(46,47),(51,63),(52,62),(53,61),(54,60),(55,59),(56,58),(64,66),(67,84),(68,83),(69,82),(70,81),(71,80),(72,79),(73,78),(74,77),(75,76),(86,105),(87,104),(88,103),(89,102),(90,101),(91,100),(92,99),(93,98),(94,97),(95,96)], [(1,47,42,96,76),(2,48,22,97,77),(3,49,23,98,78),(4,50,24,99,79),(5,51,25,100,80),(6,52,26,101,81),(7,53,27,102,82),(8,54,28,103,83),(9,55,29,104,84),(10,56,30,105,64),(11,57,31,85,65),(12,58,32,86,66),(13,59,33,87,67),(14,60,34,88,68),(15,61,35,89,69),(16,62,36,90,70),(17,63,37,91,71),(18,43,38,92,72),(19,44,39,93,73),(20,45,40,94,74),(21,46,41,95,75)], [(1,76),(2,84),(3,71),(4,79),(5,66),(6,74),(7,82),(8,69),(9,77),(10,64),(11,72),(12,80),(13,67),(14,75),(15,83),(16,70),(17,78),(18,65),(19,73),(20,81),(21,68),(22,29),(23,37),(25,32),(26,40),(28,35),(31,38),(34,41),(43,85),(44,93),(45,101),(46,88),(47,96),(48,104),(49,91),(50,99),(51,86),(52,94),(53,102),(54,89),(55,97),(56,105),(57,92),(58,100),(59,87),(60,95),(61,103),(62,90),(63,98)]])

39 conjugacy classes

class 1 2A2B2C 3 5A5B 6 7A7B7C10A10B14A14B14C15A15B21A21B21C35A···35F105A···105L
order122235567771010141414151521212135···35105···105
size1152135222702224242303030444444···44···4

39 irreducible representations

dim11112222224444
type+++++++++++++
imageC1C2C2C2S3D5D6D7D10D14S3×D5S3×D7D5×D7D15⋊D7
kernelD15⋊D7C3×D35C5×D21C7×D15D35D21C35D15C21C15C7C5C3C1
# reps111112132323612

Matrix representation of D15⋊D7 in GL6(𝔽211)

100000
010000
008110000
00192000
000020956
0000641
,
100000
010000
00010000
0019000
00002100
0000641
,
010000
210320000
001000
000100
000010
000001
,
010000
100000
001000
000100
000021056
000001

G:=sub<GL(6,GF(211))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,81,192,0,0,0,0,100,0,0,0,0,0,0,0,209,64,0,0,0,0,56,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,19,0,0,0,0,100,0,0,0,0,0,0,0,210,64,0,0,0,0,0,1],[0,210,0,0,0,0,1,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,210,0,0,0,0,0,56,1] >;

D15⋊D7 in GAP, Magma, Sage, TeX

D_{15}\rtimes D_7
% in TeX

G:=Group("D15:D7");
// GroupNames label

G:=SmallGroup(420,30);
// by ID

G=gap.SmallGroup(420,30);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-7,122,67,488,9004]);
// Polycyclic

G:=Group<a,b,c,d|a^21=b^2=c^5=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^8,b*c=c*b,d*b*d=a^7*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D15⋊D7 in TeX

׿
×
𝔽