Extensions 1→N→G→Q→1 with N=C14 and Q=C3×D5

Direct product G=N×Q with N=C14 and Q=C3×D5
dρLabelID
D5×C422102D5xC42420,35

Semidirect products G=N:Q with N=C14 and Q=C3×D5
extensionφ:Q→Aut NdρLabelID
C14⋊(C3×D5) = C2×C5⋊F7φ: C3×D5/C5C6 ⊆ Aut C14706+C14:(C3xD5)420,19
C142(C3×D5) = C2×D5×C7⋊C3φ: C3×D5/D5C3 ⊆ Aut C14706C14:2(C3xD5)420,18
C143(C3×D5) = C6×D35φ: C3×D5/C15C2 ⊆ Aut C142102C14:3(C3xD5)420,36

Non-split extensions G=N.Q with N=C14 and Q=C3×D5
extensionφ:Q→Aut NdρLabelID
C14.(C3×D5) = C353C12φ: C3×D5/C5C6 ⊆ Aut C141406-C14.(C3xD5)420,3
C14.2(C3×D5) = Dic5×C7⋊C3φ: C3×D5/D5C3 ⊆ Aut C141406C14.2(C3xD5)420,2
C14.3(C3×D5) = C3×Dic35φ: C3×D5/C15C2 ⊆ Aut C144202C14.3(C3xD5)420,7
C14.4(C3×D5) = Dic5×C21central extension (φ=1)4202C14.4(C3xD5)420,6

׿
×
𝔽