Copied to
clipboard

G = C2×D5×C7⋊C3order 420 = 22·3·5·7

Direct product of C2, D5 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×D5×C7⋊C3, C703C6, (D5×C14)⋊C3, C73(C6×D5), C354(C2×C6), (C7×D5)⋊2C6, C142(C3×D5), C10⋊(C2×C7⋊C3), C5⋊(C22×C7⋊C3), (C10×C7⋊C3)⋊3C2, (C5×C7⋊C3)⋊4C22, SmallGroup(420,18)

Series: Derived Chief Lower central Upper central

C1C35 — C2×D5×C7⋊C3
C1C7C35C5×C7⋊C3D5×C7⋊C3 — C2×D5×C7⋊C3
C35 — C2×D5×C7⋊C3
C1C2

Generators and relations for C2×D5×C7⋊C3
 G = < a,b,c,d,e | a2=b5=c2=d7=e3=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d4 >

5C2
5C2
7C3
5C22
7C6
35C6
35C6
5C14
5C14
7C15
35C2×C6
5C2×C14
7C30
7C3×D5
7C3×D5
5C2×C7⋊C3
5C2×C7⋊C3
7C6×D5
5C22×C7⋊C3

Smallest permutation representation of C2×D5×C7⋊C3
On 70 points
Generators in S70
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 57)(23 58)(24 59)(25 60)(26 61)(27 62)(28 63)(29 64)(30 65)(31 66)(32 67)(33 68)(34 69)(35 70)
(1 29 22 15 8)(2 30 23 16 9)(3 31 24 17 10)(4 32 25 18 11)(5 33 26 19 12)(6 34 27 20 13)(7 35 28 21 14)(36 64 57 50 43)(37 65 58 51 44)(38 66 59 52 45)(39 67 60 53 46)(40 68 61 54 47)(41 69 62 55 48)(42 70 63 56 49)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 49)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 64)(16 65)(17 66)(18 67)(19 68)(20 69)(21 70)(22 57)(23 58)(24 59)(25 60)(26 61)(27 62)(28 63)(29 50)(30 51)(31 52)(32 53)(33 54)(34 55)(35 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)(30 31 33)(32 35 34)(37 38 40)(39 42 41)(44 45 47)(46 49 48)(51 52 54)(53 56 55)(58 59 61)(60 63 62)(65 66 68)(67 70 69)

G:=sub<Sym(70)| (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70), (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14)(36,64,57,50,43)(37,65,58,51,44)(38,66,59,52,45)(39,67,60,53,46)(40,68,61,54,47)(41,69,62,55,48)(42,70,63,56,49), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,49)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55)(58,59,61)(60,63,62)(65,66,68)(67,70,69)>;

G:=Group( (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70), (1,29,22,15,8)(2,30,23,16,9)(3,31,24,17,10)(4,32,25,18,11)(5,33,26,19,12)(6,34,27,20,13)(7,35,28,21,14)(36,64,57,50,43)(37,65,58,51,44)(38,66,59,52,45)(39,67,60,53,46)(40,68,61,54,47)(41,69,62,55,48)(42,70,63,56,49), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,49)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,70)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,50)(30,51)(31,52)(32,53)(33,54)(34,55)(35,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55)(58,59,61)(60,63,62)(65,66,68)(67,70,69) );

G=PermutationGroup([[(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,57),(23,58),(24,59),(25,60),(26,61),(27,62),(28,63),(29,64),(30,65),(31,66),(32,67),(33,68),(34,69),(35,70)], [(1,29,22,15,8),(2,30,23,16,9),(3,31,24,17,10),(4,32,25,18,11),(5,33,26,19,12),(6,34,27,20,13),(7,35,28,21,14),(36,64,57,50,43),(37,65,58,51,44),(38,66,59,52,45),(39,67,60,53,46),(40,68,61,54,47),(41,69,62,55,48),(42,70,63,56,49)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,49),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,64),(16,65),(17,66),(18,67),(19,68),(20,69),(21,70),(22,57),(23,58),(24,59),(25,60),(26,61),(27,62),(28,63),(29,50),(30,51),(31,52),(32,53),(33,54),(34,55),(35,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27),(30,31,33),(32,35,34),(37,38,40),(39,42,41),(44,45,47),(46,49,48),(51,52,54),(53,56,55),(58,59,61),(60,63,62),(65,66,68),(67,70,69)]])

40 conjugacy classes

class 1 2A2B2C3A3B5A5B6A6B6C6D6E6F7A7B10A10B14A14B14C14D14E14F15A15B15C15D30A30B30C30D35A35B35C35D70A70B70C70D
order1222335566666677101014141414141415151515303030303535353570707070
size11557722773535353533223315151515141414141414141466666666

40 irreducible representations

dim111111222233366
type+++++
imageC1C2C2C3C6C6D5D10C3×D5C6×D5C7⋊C3C2×C7⋊C3C2×C7⋊C3D5×C7⋊C3C2×D5×C7⋊C3
kernelC2×D5×C7⋊C3D5×C7⋊C3C10×C7⋊C3D5×C14C7×D5C70C2×C7⋊C3C7⋊C3C14C7D10D5C10C2C1
# reps121242224424244

Matrix representation of C2×D5×C7⋊C3 in GL5(𝔽211)

2100000
0210000
0021000
0002100
0000210
,
01000
210178000
00100
00010
00001
,
0210000
2100000
0021000
0002100
0000210
,
10000
01000
0020211
00100
00010
,
1960000
0196000
00100
00190210210
00010

G:=sub<GL(5,GF(211))| [210,0,0,0,0,0,210,0,0,0,0,0,210,0,0,0,0,0,210,0,0,0,0,0,210],[0,210,0,0,0,1,178,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,210,0,0,0,210,0,0,0,0,0,0,210,0,0,0,0,0,210,0,0,0,0,0,210],[1,0,0,0,0,0,1,0,0,0,0,0,20,1,0,0,0,21,0,1,0,0,1,0,0],[196,0,0,0,0,0,196,0,0,0,0,0,1,190,0,0,0,0,210,1,0,0,0,210,0] >;

C2×D5×C7⋊C3 in GAP, Magma, Sage, TeX

C_2\times D_5\times C_7\rtimes C_3
% in TeX

G:=Group("C2xD5xC7:C3");
// GroupNames label

G:=SmallGroup(420,18);
// by ID

G=gap.SmallGroup(420,18);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-7,963,764]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^5=c^2=d^7=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^4>;
// generators/relations

Export

Subgroup lattice of C2×D5×C7⋊C3 in TeX

׿
×
𝔽