Copied to
clipboard

G = C2×C5⋊F7order 420 = 22·3·5·7

Direct product of C2 and C5⋊F7

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×C5⋊F7, D70⋊C3, C10⋊F7, C701C6, D352C6, C14⋊(C3×D5), C7⋊C32D10, C72(C6×D5), C52(C2×F7), C352(C2×C6), (C2×C7⋊C3)⋊D5, (C10×C7⋊C3)⋊1C2, (C5×C7⋊C3)⋊2C22, SmallGroup(420,19)

Series: Derived Chief Lower central Upper central

C1C35 — C2×C5⋊F7
C1C7C35C5×C7⋊C3C5⋊F7 — C2×C5⋊F7
C35 — C2×C5⋊F7
C1C2

Generators and relations for C2×C5⋊F7
 G = < a,b,c,d | a2=b5=c7=d6=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c5 >

35C2
35C2
7C3
35C22
7C6
35C6
35C6
7D5
7D5
5D7
5D7
7C15
35C2×C6
7D10
5D14
7C30
7C3×D5
7C3×D5
5F7
5F7
7C6×D5
5C2×F7

Smallest permutation representation of C2×C5⋊F7
On 70 points
Generators in S70
(1 41)(2 42)(3 36)(4 37)(5 38)(6 39)(7 40)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 49)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 57)(23 58)(24 59)(25 60)(26 61)(27 62)(28 63)(29 64)(30 65)(31 66)(32 67)(33 68)(34 69)(35 70)
(1 34 27 20 13)(2 35 28 21 14)(3 29 22 15 8)(4 30 23 16 9)(5 31 24 17 10)(6 32 25 18 11)(7 33 26 19 12)(36 64 57 50 43)(37 65 58 51 44)(38 66 59 52 45)(39 67 60 53 46)(40 68 61 54 47)(41 69 62 55 48)(42 70 63 56 49)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)
(2 4 3 7 5 6)(8 33 10 32 14 30)(9 29 12 31 11 35)(13 34)(15 26 17 25 21 23)(16 22 19 24 18 28)(20 27)(36 40 38 39 42 37)(43 68 45 67 49 65)(44 64 47 66 46 70)(48 69)(50 61 52 60 56 58)(51 57 54 59 53 63)(55 62)

G:=sub<Sym(70)| (1,41)(2,42)(3,36)(4,37)(5,38)(6,39)(7,40)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70), (1,34,27,20,13)(2,35,28,21,14)(3,29,22,15,8)(4,30,23,16,9)(5,31,24,17,10)(6,32,25,18,11)(7,33,26,19,12)(36,64,57,50,43)(37,65,58,51,44)(38,66,59,52,45)(39,67,60,53,46)(40,68,61,54,47)(41,69,62,55,48)(42,70,63,56,49), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70), (2,4,3,7,5,6)(8,33,10,32,14,30)(9,29,12,31,11,35)(13,34)(15,26,17,25,21,23)(16,22,19,24,18,28)(20,27)(36,40,38,39,42,37)(43,68,45,67,49,65)(44,64,47,66,46,70)(48,69)(50,61,52,60,56,58)(51,57,54,59,53,63)(55,62)>;

G:=Group( (1,41)(2,42)(3,36)(4,37)(5,38)(6,39)(7,40)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,49)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,57)(23,58)(24,59)(25,60)(26,61)(27,62)(28,63)(29,64)(30,65)(31,66)(32,67)(33,68)(34,69)(35,70), (1,34,27,20,13)(2,35,28,21,14)(3,29,22,15,8)(4,30,23,16,9)(5,31,24,17,10)(6,32,25,18,11)(7,33,26,19,12)(36,64,57,50,43)(37,65,58,51,44)(38,66,59,52,45)(39,67,60,53,46)(40,68,61,54,47)(41,69,62,55,48)(42,70,63,56,49), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70), (2,4,3,7,5,6)(8,33,10,32,14,30)(9,29,12,31,11,35)(13,34)(15,26,17,25,21,23)(16,22,19,24,18,28)(20,27)(36,40,38,39,42,37)(43,68,45,67,49,65)(44,64,47,66,46,70)(48,69)(50,61,52,60,56,58)(51,57,54,59,53,63)(55,62) );

G=PermutationGroup([[(1,41),(2,42),(3,36),(4,37),(5,38),(6,39),(7,40),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,49),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,57),(23,58),(24,59),(25,60),(26,61),(27,62),(28,63),(29,64),(30,65),(31,66),(32,67),(33,68),(34,69),(35,70)], [(1,34,27,20,13),(2,35,28,21,14),(3,29,22,15,8),(4,30,23,16,9),(5,31,24,17,10),(6,32,25,18,11),(7,33,26,19,12),(36,64,57,50,43),(37,65,58,51,44),(38,66,59,52,45),(39,67,60,53,46),(40,68,61,54,47),(41,69,62,55,48),(42,70,63,56,49)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70)], [(2,4,3,7,5,6),(8,33,10,32,14,30),(9,29,12,31,11,35),(13,34),(15,26,17,25,21,23),(16,22,19,24,18,28),(20,27),(36,40,38,39,42,37),(43,68,45,67,49,65),(44,64,47,66,46,70),(48,69),(50,61,52,60,56,58),(51,57,54,59,53,63),(55,62)]])

34 conjugacy classes

class 1 2A2B2C3A3B5A5B6A6B6C6D6E6F 7 10A10B 14 15A15B15C15D30A30B30C30D35A35B35C35D70A70B70C70D
order12223355666666710101415151515303030303535353570707070
size113535772277353535356226141414141414141466666666

34 irreducible representations

dim11111122226666
type+++++++++
imageC1C2C2C3C6C6D5D10C3×D5C6×D5F7C2×F7C5⋊F7C2×C5⋊F7
kernelC2×C5⋊F7C5⋊F7C10×C7⋊C3D70D35C70C2×C7⋊C3C7⋊C3C14C7C10C5C2C1
# reps12124222441144

Matrix representation of C2×C5⋊F7 in GL6(𝔽211)

21000000
02100000
00210000
00021000
00002100
00000210
,
7418118101810
0741811810181
30301040030
1810074181181
30030301040
03003030104
,
010000
001000
000100
000010
000001
210210210210210210
,
100000
000001
000100
010000
210210210210210210
000010

G:=sub<GL(6,GF(211))| [210,0,0,0,0,0,0,210,0,0,0,0,0,0,210,0,0,0,0,0,0,210,0,0,0,0,0,0,210,0,0,0,0,0,0,210],[74,0,30,181,30,0,181,74,30,0,0,30,181,181,104,0,30,0,0,181,0,74,30,30,181,0,0,181,104,30,0,181,30,181,0,104],[0,0,0,0,0,210,1,0,0,0,0,210,0,1,0,0,0,210,0,0,1,0,0,210,0,0,0,1,0,210,0,0,0,0,1,210],[1,0,0,0,210,0,0,0,0,1,210,0,0,0,0,0,210,0,0,0,1,0,210,0,0,0,0,0,210,1,0,1,0,0,210,0] >;

C2×C5⋊F7 in GAP, Magma, Sage, TeX

C_2\times C_5\rtimes F_7
% in TeX

G:=Group("C2xC5:F7");
// GroupNames label

G:=SmallGroup(420,19);
// by ID

G=gap.SmallGroup(420,19);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-7,963,9004,764]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^5=c^7=d^6=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations

Export

Subgroup lattice of C2×C5⋊F7 in TeX

׿
×
𝔽