Copied to
clipboard

G = C353C12order 420 = 22·3·5·7

1st semidirect product of C35 and C12 acting via C12/C2=C6

metacyclic, supersoluble, monomial, Z-group

Aliases: C353C12, C10.F7, Dic35⋊C3, C70.1C6, C7⋊C3⋊Dic5, C7⋊(C3×Dic5), C52(C7⋊C12), C2.(C5⋊F7), C14.(C3×D5), (C5×C7⋊C3)⋊3C4, (C2×C7⋊C3).D5, (C10×C7⋊C3).1C2, SmallGroup(420,3)

Series: Derived Chief Lower central Upper central

C1C35 — C353C12
C1C7C35C70C10×C7⋊C3 — C353C12
C35 — C353C12
C1C2

Generators and relations for C353C12
 G = < a,b | a35=b12=1, bab-1=a24 >

7C3
35C4
7C6
7C15
35C12
7Dic5
5Dic7
7C30
7C3×Dic5
5C7⋊C12

Smallest permutation representation of C353C12
On 140 points
Generators in S140
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35)(36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 124 38 101)(2 108 49 100 17 113 39 85 12 123 54 90)(3 127 60 99 33 137 40 104 23 122 70 79)(4 111 36 98 14 126 41 88 34 121 51 103)(5 130 47 97 30 115 42 72 10 120 67 92)(6 114 58 96 11 139 43 91 21 119 48 81)(7 133 69 95 27 128 44 75 32 118 64 105)(8 117 45 94)(9 136 56 93 24 106 46 78 19 116 61 83)(13 107 65 89 18 132 50 84 28 112 55 74)(15 110 52 87)(16 129 63 86 31 134 53 71 26 109 68 76)(20 135 37 82 25 125 57 77 35 140 62 102)(22 138 59 80)(29 131 66 73)

G:=sub<Sym(140)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,124,38,101)(2,108,49,100,17,113,39,85,12,123,54,90)(3,127,60,99,33,137,40,104,23,122,70,79)(4,111,36,98,14,126,41,88,34,121,51,103)(5,130,47,97,30,115,42,72,10,120,67,92)(6,114,58,96,11,139,43,91,21,119,48,81)(7,133,69,95,27,128,44,75,32,118,64,105)(8,117,45,94)(9,136,56,93,24,106,46,78,19,116,61,83)(13,107,65,89,18,132,50,84,28,112,55,74)(15,110,52,87)(16,129,63,86,31,134,53,71,26,109,68,76)(20,135,37,82,25,125,57,77,35,140,62,102)(22,138,59,80)(29,131,66,73)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,124,38,101)(2,108,49,100,17,113,39,85,12,123,54,90)(3,127,60,99,33,137,40,104,23,122,70,79)(4,111,36,98,14,126,41,88,34,121,51,103)(5,130,47,97,30,115,42,72,10,120,67,92)(6,114,58,96,11,139,43,91,21,119,48,81)(7,133,69,95,27,128,44,75,32,118,64,105)(8,117,45,94)(9,136,56,93,24,106,46,78,19,116,61,83)(13,107,65,89,18,132,50,84,28,112,55,74)(15,110,52,87)(16,129,63,86,31,134,53,71,26,109,68,76)(20,135,37,82,25,125,57,77,35,140,62,102)(22,138,59,80)(29,131,66,73) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35),(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,124,38,101),(2,108,49,100,17,113,39,85,12,123,54,90),(3,127,60,99,33,137,40,104,23,122,70,79),(4,111,36,98,14,126,41,88,34,121,51,103),(5,130,47,97,30,115,42,72,10,120,67,92),(6,114,58,96,11,139,43,91,21,119,48,81),(7,133,69,95,27,128,44,75,32,118,64,105),(8,117,45,94),(9,136,56,93,24,106,46,78,19,116,61,83),(13,107,65,89,18,132,50,84,28,112,55,74),(15,110,52,87),(16,129,63,86,31,134,53,71,26,109,68,76),(20,135,37,82,25,125,57,77,35,140,62,102),(22,138,59,80),(29,131,66,73)]])

34 conjugacy classes

class 1  2 3A3B4A4B5A5B6A6B 7 10A10B12A12B12C12D 14 15A15B15C15D30A30B30C30D35A35B35C35D70A70B70C70D
order123344556671010121212121415151515303030303535353570707070
size117735352277622353535356141414141414141466666666

34 irreducible representations

dim11111122226666
type+++-+-+-
imageC1C2C3C4C6C12D5Dic5C3×D5C3×Dic5F7C7⋊C12C5⋊F7C353C12
kernelC353C12C10×C7⋊C3Dic35C5×C7⋊C3C70C35C2×C7⋊C3C7⋊C3C14C7C10C5C2C1
# reps11222422441144

Matrix representation of C353C12 in GL6(𝔽421)

43003874343
37803783783440
03780378378344
777734773434
38743430430
03874343043
,
19266060
60019266
235235229235229229
41541518600415
04150415415186
01926606

G:=sub<GL(6,GF(421))| [43,378,0,77,387,0,0,0,378,77,43,387,0,378,0,34,43,43,387,378,378,77,0,43,43,344,378,34,43,0,43,0,344,34,0,43],[192,6,235,415,0,0,6,0,235,415,415,192,6,0,229,186,0,6,0,192,235,0,415,6,6,6,229,0,415,0,0,6,229,415,186,6] >;

C353C12 in GAP, Magma, Sage, TeX

C_{35}\rtimes_3C_{12}
% in TeX

G:=Group("C35:3C12");
// GroupNames label

G:=SmallGroup(420,3);
// by ID

G=gap.SmallGroup(420,3);
# by ID

G:=PCGroup([5,-2,-3,-2,-5,-7,30,963,9004,1509]);
// Polycyclic

G:=Group<a,b|a^35=b^12=1,b*a*b^-1=a^24>;
// generators/relations

Export

Subgroup lattice of C353C12 in TeX

׿
×
𝔽