Copied to
clipboard

G = Dic5×C7⋊C3order 420 = 22·3·5·7

Direct product of Dic5 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, Z-group

Aliases: Dic5×C7⋊C3, C355C12, C70.3C6, (C7×Dic5)⋊C3, C72(C3×Dic5), C14.2(C3×D5), C52(C4×C7⋊C3), C2.(D5×C7⋊C3), (C5×C7⋊C3)⋊5C4, C10.(C2×C7⋊C3), (C2×C7⋊C3).2D5, (C10×C7⋊C3).3C2, SmallGroup(420,2)

Series: Derived Chief Lower central Upper central

C1C35 — Dic5×C7⋊C3
C1C7C35C70C10×C7⋊C3 — Dic5×C7⋊C3
C35 — Dic5×C7⋊C3
C1C2

Generators and relations for Dic5×C7⋊C3
 G = < a,b,c,d | a10=c7=d3=1, b2=a5, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

7C3
5C4
7C6
7C15
35C12
5C28
7C30
7C3×Dic5
5C4×C7⋊C3

Smallest permutation representation of Dic5×C7⋊C3
On 140 points
Generators in S140
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)
(1 30 6 25)(2 29 7 24)(3 28 8 23)(4 27 9 22)(5 26 10 21)(11 130 16 125)(12 129 17 124)(13 128 18 123)(14 127 19 122)(15 126 20 121)(31 110 36 105)(32 109 37 104)(33 108 38 103)(34 107 39 102)(35 106 40 101)(41 100 46 95)(42 99 47 94)(43 98 48 93)(44 97 49 92)(45 96 50 91)(51 90 56 85)(52 89 57 84)(53 88 58 83)(54 87 59 82)(55 86 60 81)(61 80 66 75)(62 79 67 74)(63 78 68 73)(64 77 69 72)(65 76 70 71)(111 136 116 131)(112 135 117 140)(113 134 118 139)(114 133 119 138)(115 132 120 137)
(1 109 118 91 121 86 76)(2 110 119 92 122 87 77)(3 101 120 93 123 88 78)(4 102 111 94 124 89 79)(5 103 112 95 125 90 80)(6 104 113 96 126 81 71)(7 105 114 97 127 82 72)(8 106 115 98 128 83 73)(9 107 116 99 129 84 74)(10 108 117 100 130 85 75)(11 56 66 26 33 135 41)(12 57 67 27 34 136 42)(13 58 68 28 35 137 43)(14 59 69 29 36 138 44)(15 60 70 30 37 139 45)(16 51 61 21 38 140 46)(17 52 62 22 39 131 47)(18 53 63 23 40 132 48)(19 54 64 24 31 133 49)(20 55 65 25 32 134 50)
(11 33 135)(12 34 136)(13 35 137)(14 36 138)(15 37 139)(16 38 140)(17 39 131)(18 40 132)(19 31 133)(20 32 134)(41 66 56)(42 67 57)(43 68 58)(44 69 59)(45 70 60)(46 61 51)(47 62 52)(48 63 53)(49 64 54)(50 65 55)(71 81 96)(72 82 97)(73 83 98)(74 84 99)(75 85 100)(76 86 91)(77 87 92)(78 88 93)(79 89 94)(80 90 95)(101 120 123)(102 111 124)(103 112 125)(104 113 126)(105 114 127)(106 115 128)(107 116 129)(108 117 130)(109 118 121)(110 119 122)

G:=sub<Sym(140)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140), (1,30,6,25)(2,29,7,24)(3,28,8,23)(4,27,9,22)(5,26,10,21)(11,130,16,125)(12,129,17,124)(13,128,18,123)(14,127,19,122)(15,126,20,121)(31,110,36,105)(32,109,37,104)(33,108,38,103)(34,107,39,102)(35,106,40,101)(41,100,46,95)(42,99,47,94)(43,98,48,93)(44,97,49,92)(45,96,50,91)(51,90,56,85)(52,89,57,84)(53,88,58,83)(54,87,59,82)(55,86,60,81)(61,80,66,75)(62,79,67,74)(63,78,68,73)(64,77,69,72)(65,76,70,71)(111,136,116,131)(112,135,117,140)(113,134,118,139)(114,133,119,138)(115,132,120,137), (1,109,118,91,121,86,76)(2,110,119,92,122,87,77)(3,101,120,93,123,88,78)(4,102,111,94,124,89,79)(5,103,112,95,125,90,80)(6,104,113,96,126,81,71)(7,105,114,97,127,82,72)(8,106,115,98,128,83,73)(9,107,116,99,129,84,74)(10,108,117,100,130,85,75)(11,56,66,26,33,135,41)(12,57,67,27,34,136,42)(13,58,68,28,35,137,43)(14,59,69,29,36,138,44)(15,60,70,30,37,139,45)(16,51,61,21,38,140,46)(17,52,62,22,39,131,47)(18,53,63,23,40,132,48)(19,54,64,24,31,133,49)(20,55,65,25,32,134,50), (11,33,135)(12,34,136)(13,35,137)(14,36,138)(15,37,139)(16,38,140)(17,39,131)(18,40,132)(19,31,133)(20,32,134)(41,66,56)(42,67,57)(43,68,58)(44,69,59)(45,70,60)(46,61,51)(47,62,52)(48,63,53)(49,64,54)(50,65,55)(71,81,96)(72,82,97)(73,83,98)(74,84,99)(75,85,100)(76,86,91)(77,87,92)(78,88,93)(79,89,94)(80,90,95)(101,120,123)(102,111,124)(103,112,125)(104,113,126)(105,114,127)(106,115,128)(107,116,129)(108,117,130)(109,118,121)(110,119,122)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140), (1,30,6,25)(2,29,7,24)(3,28,8,23)(4,27,9,22)(5,26,10,21)(11,130,16,125)(12,129,17,124)(13,128,18,123)(14,127,19,122)(15,126,20,121)(31,110,36,105)(32,109,37,104)(33,108,38,103)(34,107,39,102)(35,106,40,101)(41,100,46,95)(42,99,47,94)(43,98,48,93)(44,97,49,92)(45,96,50,91)(51,90,56,85)(52,89,57,84)(53,88,58,83)(54,87,59,82)(55,86,60,81)(61,80,66,75)(62,79,67,74)(63,78,68,73)(64,77,69,72)(65,76,70,71)(111,136,116,131)(112,135,117,140)(113,134,118,139)(114,133,119,138)(115,132,120,137), (1,109,118,91,121,86,76)(2,110,119,92,122,87,77)(3,101,120,93,123,88,78)(4,102,111,94,124,89,79)(5,103,112,95,125,90,80)(6,104,113,96,126,81,71)(7,105,114,97,127,82,72)(8,106,115,98,128,83,73)(9,107,116,99,129,84,74)(10,108,117,100,130,85,75)(11,56,66,26,33,135,41)(12,57,67,27,34,136,42)(13,58,68,28,35,137,43)(14,59,69,29,36,138,44)(15,60,70,30,37,139,45)(16,51,61,21,38,140,46)(17,52,62,22,39,131,47)(18,53,63,23,40,132,48)(19,54,64,24,31,133,49)(20,55,65,25,32,134,50), (11,33,135)(12,34,136)(13,35,137)(14,36,138)(15,37,139)(16,38,140)(17,39,131)(18,40,132)(19,31,133)(20,32,134)(41,66,56)(42,67,57)(43,68,58)(44,69,59)(45,70,60)(46,61,51)(47,62,52)(48,63,53)(49,64,54)(50,65,55)(71,81,96)(72,82,97)(73,83,98)(74,84,99)(75,85,100)(76,86,91)(77,87,92)(78,88,93)(79,89,94)(80,90,95)(101,120,123)(102,111,124)(103,112,125)(104,113,126)(105,114,127)(106,115,128)(107,116,129)(108,117,130)(109,118,121)(110,119,122) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140)], [(1,30,6,25),(2,29,7,24),(3,28,8,23),(4,27,9,22),(5,26,10,21),(11,130,16,125),(12,129,17,124),(13,128,18,123),(14,127,19,122),(15,126,20,121),(31,110,36,105),(32,109,37,104),(33,108,38,103),(34,107,39,102),(35,106,40,101),(41,100,46,95),(42,99,47,94),(43,98,48,93),(44,97,49,92),(45,96,50,91),(51,90,56,85),(52,89,57,84),(53,88,58,83),(54,87,59,82),(55,86,60,81),(61,80,66,75),(62,79,67,74),(63,78,68,73),(64,77,69,72),(65,76,70,71),(111,136,116,131),(112,135,117,140),(113,134,118,139),(114,133,119,138),(115,132,120,137)], [(1,109,118,91,121,86,76),(2,110,119,92,122,87,77),(3,101,120,93,123,88,78),(4,102,111,94,124,89,79),(5,103,112,95,125,90,80),(6,104,113,96,126,81,71),(7,105,114,97,127,82,72),(8,106,115,98,128,83,73),(9,107,116,99,129,84,74),(10,108,117,100,130,85,75),(11,56,66,26,33,135,41),(12,57,67,27,34,136,42),(13,58,68,28,35,137,43),(14,59,69,29,36,138,44),(15,60,70,30,37,139,45),(16,51,61,21,38,140,46),(17,52,62,22,39,131,47),(18,53,63,23,40,132,48),(19,54,64,24,31,133,49),(20,55,65,25,32,134,50)], [(11,33,135),(12,34,136),(13,35,137),(14,36,138),(15,37,139),(16,38,140),(17,39,131),(18,40,132),(19,31,133),(20,32,134),(41,66,56),(42,67,57),(43,68,58),(44,69,59),(45,70,60),(46,61,51),(47,62,52),(48,63,53),(49,64,54),(50,65,55),(71,81,96),(72,82,97),(73,83,98),(74,84,99),(75,85,100),(76,86,91),(77,87,92),(78,88,93),(79,89,94),(80,90,95),(101,120,123),(102,111,124),(103,112,125),(104,113,126),(105,114,127),(106,115,128),(107,116,129),(108,117,130),(109,118,121),(110,119,122)]])

40 conjugacy classes

class 1  2 3A3B4A4B5A5B6A6B7A7B10A10B12A12B12C12D14A14B15A15B15C15D28A28B28C28D30A30B30C30D35A35B35C35D70A70B70C70D
order12334455667710101212121214141515151528282828303030303535353570707070
size11775522773322353535353314141414151515151414141466666666

40 irreducible representations

dim111111222233366
type+++-
imageC1C2C3C4C6C12D5Dic5C3×D5C3×Dic5C7⋊C3C2×C7⋊C3C4×C7⋊C3D5×C7⋊C3Dic5×C7⋊C3
kernelDic5×C7⋊C3C10×C7⋊C3C7×Dic5C5×C7⋊C3C70C35C2×C7⋊C3C7⋊C3C14C7Dic5C10C5C2C1
# reps112224224422444

Matrix representation of Dic5×C7⋊C3 in GL5(𝔽421)

0420000
1111000
00100
00010
00001
,
287401000
119134000
0042000
0004200
0000420
,
10000
01000
00001
0010245
0001244
,
4000000
0400000
002441760
004201771
0042010

G:=sub<GL(5,GF(421))| [0,1,0,0,0,420,111,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[287,119,0,0,0,401,134,0,0,0,0,0,420,0,0,0,0,0,420,0,0,0,0,0,420],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,245,244],[400,0,0,0,0,0,400,0,0,0,0,0,244,420,420,0,0,176,177,1,0,0,0,1,0] >;

Dic5×C7⋊C3 in GAP, Magma, Sage, TeX

{\rm Dic}_5\times C_7\rtimes C_3
% in TeX

G:=Group("Dic5xC7:C3");
// GroupNames label

G:=SmallGroup(420,2);
// by ID

G=gap.SmallGroup(420,2);
# by ID

G:=PCGroup([5,-2,-3,-2,-5,-7,30,963,1509]);
// Polycyclic

G:=Group<a,b,c,d|a^10=c^7=d^3=1,b^2=a^5,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of Dic5×C7⋊C3 in TeX

׿
×
𝔽