Copied to
clipboard

G = C18.5S4order 432 = 24·33

5th non-split extension by C18 of S4 acting via S4/A4=C2

non-abelian, soluble

Aliases: C18.5S4, C9⋊CSU2(𝔽3), SL2(𝔽3).D9, Q8⋊C9.1S3, C6.1(C3⋊S4), C2.2(C9⋊S4), (Q8×C9).3S3, Q8.1(C9⋊S3), C3.1(C6.5S4), (C9×SL2(𝔽3)).1C2, (C3×SL2(𝔽3)).4S3, (C3×Q8).1(C3⋊S3), SmallGroup(432,252)

Series: Derived Chief Lower central Upper central

C1C2Q8C9×SL2(𝔽3) — C18.5S4
C1C2Q8C3×Q8Q8×C9C9×SL2(𝔽3) — C18.5S4
C9×SL2(𝔽3) — C18.5S4
C1C2

Generators and relations for C18.5S4
 G = < a,b,c,d,e | a18=d3=1, b2=c2=e2=a9, ab=ba, ac=ca, ad=da, eae-1=a-1, cbc-1=a9b, dbd-1=a9bc, ebe-1=bc, dcd-1=b, ece-1=a9c, ede-1=d-1 >

Subgroups: 461 in 59 conjugacy classes, 17 normal (12 characteristic)
C1, C2, C3, C3, C4, C6, C6, C8, Q8, Q8, C9, C9, C32, Dic3, C12, Q16, C18, C18, C3×C6, C3⋊C8, SL2(𝔽3), Dic6, C3×Q8, C3×C9, Dic9, C36, C3⋊Dic3, C3⋊Q16, CSU2(𝔽3), C3×C18, C9⋊C8, Q8⋊C9, Dic18, Q8×C9, C3×SL2(𝔽3), C9⋊Dic3, C9⋊Q16, Q8.D9, C6.5S4, C9×SL2(𝔽3), C18.5S4
Quotients: C1, C2, S3, D9, C3⋊S3, S4, CSU2(𝔽3), C9⋊S3, C3⋊S4, C6.5S4, C9⋊S4, C18.5S4

Smallest permutation representation of C18.5S4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 108 10 99)(2 91 11 100)(3 92 12 101)(4 93 13 102)(5 94 14 103)(6 95 15 104)(7 96 16 105)(8 97 17 106)(9 98 18 107)(19 53 28 44)(20 54 29 45)(21 37 30 46)(22 38 31 47)(23 39 32 48)(24 40 33 49)(25 41 34 50)(26 42 35 51)(27 43 36 52)(55 139 64 130)(56 140 65 131)(57 141 66 132)(58 142 67 133)(59 143 68 134)(60 144 69 135)(61 127 70 136)(62 128 71 137)(63 129 72 138)(73 117 82 126)(74 118 83 109)(75 119 84 110)(76 120 85 111)(77 121 86 112)(78 122 87 113)(79 123 88 114)(80 124 89 115)(81 125 90 116)
(1 110 10 119)(2 111 11 120)(3 112 12 121)(4 113 13 122)(5 114 14 123)(6 115 15 124)(7 116 16 125)(8 117 17 126)(9 118 18 109)(19 61 28 70)(20 62 29 71)(21 63 30 72)(22 64 31 55)(23 65 32 56)(24 66 33 57)(25 67 34 58)(26 68 35 59)(27 69 36 60)(37 138 46 129)(38 139 47 130)(39 140 48 131)(40 141 49 132)(41 142 50 133)(42 143 51 134)(43 144 52 135)(44 127 53 136)(45 128 54 137)(73 106 82 97)(74 107 83 98)(75 108 84 99)(76 91 85 100)(77 92 86 101)(78 93 87 102)(79 94 88 103)(80 95 89 104)(81 96 90 105)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)(19 67 38)(20 68 39)(21 69 40)(22 70 41)(23 71 42)(24 72 43)(25 55 44)(26 56 45)(27 57 46)(28 58 47)(29 59 48)(30 60 49)(31 61 50)(32 62 51)(33 63 52)(34 64 53)(35 65 54)(36 66 37)(73 94 120)(74 95 121)(75 96 122)(76 97 123)(77 98 124)(78 99 125)(79 100 126)(80 101 109)(81 102 110)(82 103 111)(83 104 112)(84 105 113)(85 106 114)(86 107 115)(87 108 116)(88 91 117)(89 92 118)(90 93 119)(127 133 139)(128 134 140)(129 135 141)(130 136 142)(131 137 143)(132 138 144)
(1 132 10 141)(2 131 11 140)(3 130 12 139)(4 129 13 138)(5 128 14 137)(6 127 15 136)(7 144 16 135)(8 143 17 134)(9 142 18 133)(19 104 28 95)(20 103 29 94)(21 102 30 93)(22 101 31 92)(23 100 32 91)(24 99 33 108)(25 98 34 107)(26 97 35 106)(27 96 36 105)(37 113 46 122)(38 112 47 121)(39 111 48 120)(40 110 49 119)(41 109 50 118)(42 126 51 117)(43 125 52 116)(44 124 53 115)(45 123 54 114)(55 77 64 86)(56 76 65 85)(57 75 66 84)(58 74 67 83)(59 73 68 82)(60 90 69 81)(61 89 70 80)(62 88 71 79)(63 87 72 78)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,108,10,99)(2,91,11,100)(3,92,12,101)(4,93,13,102)(5,94,14,103)(6,95,15,104)(7,96,16,105)(8,97,17,106)(9,98,18,107)(19,53,28,44)(20,54,29,45)(21,37,30,46)(22,38,31,47)(23,39,32,48)(24,40,33,49)(25,41,34,50)(26,42,35,51)(27,43,36,52)(55,139,64,130)(56,140,65,131)(57,141,66,132)(58,142,67,133)(59,143,68,134)(60,144,69,135)(61,127,70,136)(62,128,71,137)(63,129,72,138)(73,117,82,126)(74,118,83,109)(75,119,84,110)(76,120,85,111)(77,121,86,112)(78,122,87,113)(79,123,88,114)(80,124,89,115)(81,125,90,116), (1,110,10,119)(2,111,11,120)(3,112,12,121)(4,113,13,122)(5,114,14,123)(6,115,15,124)(7,116,16,125)(8,117,17,126)(9,118,18,109)(19,61,28,70)(20,62,29,71)(21,63,30,72)(22,64,31,55)(23,65,32,56)(24,66,33,57)(25,67,34,58)(26,68,35,59)(27,69,36,60)(37,138,46,129)(38,139,47,130)(39,140,48,131)(40,141,49,132)(41,142,50,133)(42,143,51,134)(43,144,52,135)(44,127,53,136)(45,128,54,137)(73,106,82,97)(74,107,83,98)(75,108,84,99)(76,91,85,100)(77,92,86,101)(78,93,87,102)(79,94,88,103)(80,95,89,104)(81,96,90,105), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,67,38)(20,68,39)(21,69,40)(22,70,41)(23,71,42)(24,72,43)(25,55,44)(26,56,45)(27,57,46)(28,58,47)(29,59,48)(30,60,49)(31,61,50)(32,62,51)(33,63,52)(34,64,53)(35,65,54)(36,66,37)(73,94,120)(74,95,121)(75,96,122)(76,97,123)(77,98,124)(78,99,125)(79,100,126)(80,101,109)(81,102,110)(82,103,111)(83,104,112)(84,105,113)(85,106,114)(86,107,115)(87,108,116)(88,91,117)(89,92,118)(90,93,119)(127,133,139)(128,134,140)(129,135,141)(130,136,142)(131,137,143)(132,138,144), (1,132,10,141)(2,131,11,140)(3,130,12,139)(4,129,13,138)(5,128,14,137)(6,127,15,136)(7,144,16,135)(8,143,17,134)(9,142,18,133)(19,104,28,95)(20,103,29,94)(21,102,30,93)(22,101,31,92)(23,100,32,91)(24,99,33,108)(25,98,34,107)(26,97,35,106)(27,96,36,105)(37,113,46,122)(38,112,47,121)(39,111,48,120)(40,110,49,119)(41,109,50,118)(42,126,51,117)(43,125,52,116)(44,124,53,115)(45,123,54,114)(55,77,64,86)(56,76,65,85)(57,75,66,84)(58,74,67,83)(59,73,68,82)(60,90,69,81)(61,89,70,80)(62,88,71,79)(63,87,72,78)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,108,10,99)(2,91,11,100)(3,92,12,101)(4,93,13,102)(5,94,14,103)(6,95,15,104)(7,96,16,105)(8,97,17,106)(9,98,18,107)(19,53,28,44)(20,54,29,45)(21,37,30,46)(22,38,31,47)(23,39,32,48)(24,40,33,49)(25,41,34,50)(26,42,35,51)(27,43,36,52)(55,139,64,130)(56,140,65,131)(57,141,66,132)(58,142,67,133)(59,143,68,134)(60,144,69,135)(61,127,70,136)(62,128,71,137)(63,129,72,138)(73,117,82,126)(74,118,83,109)(75,119,84,110)(76,120,85,111)(77,121,86,112)(78,122,87,113)(79,123,88,114)(80,124,89,115)(81,125,90,116), (1,110,10,119)(2,111,11,120)(3,112,12,121)(4,113,13,122)(5,114,14,123)(6,115,15,124)(7,116,16,125)(8,117,17,126)(9,118,18,109)(19,61,28,70)(20,62,29,71)(21,63,30,72)(22,64,31,55)(23,65,32,56)(24,66,33,57)(25,67,34,58)(26,68,35,59)(27,69,36,60)(37,138,46,129)(38,139,47,130)(39,140,48,131)(40,141,49,132)(41,142,50,133)(42,143,51,134)(43,144,52,135)(44,127,53,136)(45,128,54,137)(73,106,82,97)(74,107,83,98)(75,108,84,99)(76,91,85,100)(77,92,86,101)(78,93,87,102)(79,94,88,103)(80,95,89,104)(81,96,90,105), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,67,38)(20,68,39)(21,69,40)(22,70,41)(23,71,42)(24,72,43)(25,55,44)(26,56,45)(27,57,46)(28,58,47)(29,59,48)(30,60,49)(31,61,50)(32,62,51)(33,63,52)(34,64,53)(35,65,54)(36,66,37)(73,94,120)(74,95,121)(75,96,122)(76,97,123)(77,98,124)(78,99,125)(79,100,126)(80,101,109)(81,102,110)(82,103,111)(83,104,112)(84,105,113)(85,106,114)(86,107,115)(87,108,116)(88,91,117)(89,92,118)(90,93,119)(127,133,139)(128,134,140)(129,135,141)(130,136,142)(131,137,143)(132,138,144), (1,132,10,141)(2,131,11,140)(3,130,12,139)(4,129,13,138)(5,128,14,137)(6,127,15,136)(7,144,16,135)(8,143,17,134)(9,142,18,133)(19,104,28,95)(20,103,29,94)(21,102,30,93)(22,101,31,92)(23,100,32,91)(24,99,33,108)(25,98,34,107)(26,97,35,106)(27,96,36,105)(37,113,46,122)(38,112,47,121)(39,111,48,120)(40,110,49,119)(41,109,50,118)(42,126,51,117)(43,125,52,116)(44,124,53,115)(45,123,54,114)(55,77,64,86)(56,76,65,85)(57,75,66,84)(58,74,67,83)(59,73,68,82)(60,90,69,81)(61,89,70,80)(62,88,71,79)(63,87,72,78) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,108,10,99),(2,91,11,100),(3,92,12,101),(4,93,13,102),(5,94,14,103),(6,95,15,104),(7,96,16,105),(8,97,17,106),(9,98,18,107),(19,53,28,44),(20,54,29,45),(21,37,30,46),(22,38,31,47),(23,39,32,48),(24,40,33,49),(25,41,34,50),(26,42,35,51),(27,43,36,52),(55,139,64,130),(56,140,65,131),(57,141,66,132),(58,142,67,133),(59,143,68,134),(60,144,69,135),(61,127,70,136),(62,128,71,137),(63,129,72,138),(73,117,82,126),(74,118,83,109),(75,119,84,110),(76,120,85,111),(77,121,86,112),(78,122,87,113),(79,123,88,114),(80,124,89,115),(81,125,90,116)], [(1,110,10,119),(2,111,11,120),(3,112,12,121),(4,113,13,122),(5,114,14,123),(6,115,15,124),(7,116,16,125),(8,117,17,126),(9,118,18,109),(19,61,28,70),(20,62,29,71),(21,63,30,72),(22,64,31,55),(23,65,32,56),(24,66,33,57),(25,67,34,58),(26,68,35,59),(27,69,36,60),(37,138,46,129),(38,139,47,130),(39,140,48,131),(40,141,49,132),(41,142,50,133),(42,143,51,134),(43,144,52,135),(44,127,53,136),(45,128,54,137),(73,106,82,97),(74,107,83,98),(75,108,84,99),(76,91,85,100),(77,92,86,101),(78,93,87,102),(79,94,88,103),(80,95,89,104),(81,96,90,105)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18),(19,67,38),(20,68,39),(21,69,40),(22,70,41),(23,71,42),(24,72,43),(25,55,44),(26,56,45),(27,57,46),(28,58,47),(29,59,48),(30,60,49),(31,61,50),(32,62,51),(33,63,52),(34,64,53),(35,65,54),(36,66,37),(73,94,120),(74,95,121),(75,96,122),(76,97,123),(77,98,124),(78,99,125),(79,100,126),(80,101,109),(81,102,110),(82,103,111),(83,104,112),(84,105,113),(85,106,114),(86,107,115),(87,108,116),(88,91,117),(89,92,118),(90,93,119),(127,133,139),(128,134,140),(129,135,141),(130,136,142),(131,137,143),(132,138,144)], [(1,132,10,141),(2,131,11,140),(3,130,12,139),(4,129,13,138),(5,128,14,137),(6,127,15,136),(7,144,16,135),(8,143,17,134),(9,142,18,133),(19,104,28,95),(20,103,29,94),(21,102,30,93),(22,101,31,92),(23,100,32,91),(24,99,33,108),(25,98,34,107),(26,97,35,106),(27,96,36,105),(37,113,46,122),(38,112,47,121),(39,111,48,120),(40,110,49,119),(41,109,50,118),(42,126,51,117),(43,125,52,116),(44,124,53,115),(45,123,54,114),(55,77,64,86),(56,76,65,85),(57,75,66,84),(58,74,67,83),(59,73,68,82),(60,90,69,81),(61,89,70,80),(62,88,71,79),(63,87,72,78)]])

36 conjugacy classes

class 1  2 3A3B3C3D4A4B6A6B6C6D8A8B9A9B9C9D···9I 12 18A18B18C18D···18I36A36B36C
order123333446666889999···91218181818···18363636
size1128886108288854542228···8122228···8121212

36 irreducible representations

dim1122222344466
type++++++-+---++
imageC1C2S3S3S3D9CSU2(𝔽3)S4CSU2(𝔽3)C6.5S4C18.5S4C3⋊S4C9⋊S4
kernelC18.5S4C9×SL2(𝔽3)Q8⋊C9Q8×C9C3×SL2(𝔽3)SL2(𝔽3)C9C18C9C3C1C6C2
# reps1121192213913

Matrix representation of C18.5S4 in GL4(𝔽73) generated by

317000
32800
00720
00072
,
1000
0100
001325
003760
,
1000
0100
002436
005949
,
1000
0100
00072
00172
,
544400
251900
006043
003013
G:=sub<GL(4,GF(73))| [31,3,0,0,70,28,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,13,37,0,0,25,60],[1,0,0,0,0,1,0,0,0,0,24,59,0,0,36,49],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,72,72],[54,25,0,0,44,19,0,0,0,0,60,30,0,0,43,13] >;

C18.5S4 in GAP, Magma, Sage, TeX

C_{18}._5S_4
% in TeX

G:=Group("C18.5S4");
// GroupNames label

G:=SmallGroup(432,252);
// by ID

G=gap.SmallGroup(432,252);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,1512,57,632,142,1011,3784,5681,172,2273,3414,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^18=d^3=1,b^2=c^2=e^2=a^9,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1,c*b*c^-1=a^9*b,d*b*d^-1=a^9*b*c,e*b*e^-1=b*c,d*c*d^-1=b,e*c*e^-1=a^9*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽