Copied to
clipboard

G = C9×SL2(𝔽3)  order 216 = 23·33

Direct product of C9 and SL2(𝔽3)

direct product, non-abelian, soluble

Aliases: C9×SL2(𝔽3), C18.4A4, C2.(C9×A4), Q8⋊C93C3, Q81(C3×C9), C6.1(C3×A4), (Q8×C9)⋊1C3, (C3×Q8).1C32, C3.1(C3×SL2(𝔽3)), (C3×SL2(𝔽3)).2C3, SmallGroup(216,38)

Series: Derived Chief Lower central Upper central

C1C2Q8 — C9×SL2(𝔽3)
C1C2Q8C3×Q8C3×SL2(𝔽3) — C9×SL2(𝔽3)
Q8 — C9×SL2(𝔽3)
C1C18

Generators and relations for C9×SL2(𝔽3)
 G = < a,b,c,d | a9=b4=d3=1, c2=b2, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=c, dcd-1=bc >

4C3
4C3
4C3
3C4
4C6
4C6
4C6
4C9
4C32
4C9
3C12
4C3×C6
4C18
4C18
4C3×C9
3C36
4C3×C18

Smallest permutation representation of C9×SL2(𝔽3)
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 21 14 64)(2 22 15 65)(3 23 16 66)(4 24 17 67)(5 25 18 68)(6 26 10 69)(7 27 11 70)(8 19 12 71)(9 20 13 72)(28 46 41 60)(29 47 42 61)(30 48 43 62)(31 49 44 63)(32 50 45 55)(33 51 37 56)(34 52 38 57)(35 53 39 58)(36 54 40 59)
(1 58 14 53)(2 59 15 54)(3 60 16 46)(4 61 17 47)(5 62 18 48)(6 63 10 49)(7 55 11 50)(8 56 12 51)(9 57 13 52)(19 37 71 33)(20 38 72 34)(21 39 64 35)(22 40 65 36)(23 41 66 28)(24 42 67 29)(25 43 68 30)(26 44 69 31)(27 45 70 32)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 43 59)(20 44 60)(21 45 61)(22 37 62)(23 38 63)(24 39 55)(25 40 56)(26 41 57)(27 42 58)(28 52 69)(29 53 70)(30 54 71)(31 46 72)(32 47 64)(33 48 65)(34 49 66)(35 50 67)(36 51 68)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,21,14,64)(2,22,15,65)(3,23,16,66)(4,24,17,67)(5,25,18,68)(6,26,10,69)(7,27,11,70)(8,19,12,71)(9,20,13,72)(28,46,41,60)(29,47,42,61)(30,48,43,62)(31,49,44,63)(32,50,45,55)(33,51,37,56)(34,52,38,57)(35,53,39,58)(36,54,40,59), (1,58,14,53)(2,59,15,54)(3,60,16,46)(4,61,17,47)(5,62,18,48)(6,63,10,49)(7,55,11,50)(8,56,12,51)(9,57,13,52)(19,37,71,33)(20,38,72,34)(21,39,64,35)(22,40,65,36)(23,41,66,28)(24,42,67,29)(25,43,68,30)(26,44,69,31)(27,45,70,32), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,43,59)(20,44,60)(21,45,61)(22,37,62)(23,38,63)(24,39,55)(25,40,56)(26,41,57)(27,42,58)(28,52,69)(29,53,70)(30,54,71)(31,46,72)(32,47,64)(33,48,65)(34,49,66)(35,50,67)(36,51,68)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,21,14,64)(2,22,15,65)(3,23,16,66)(4,24,17,67)(5,25,18,68)(6,26,10,69)(7,27,11,70)(8,19,12,71)(9,20,13,72)(28,46,41,60)(29,47,42,61)(30,48,43,62)(31,49,44,63)(32,50,45,55)(33,51,37,56)(34,52,38,57)(35,53,39,58)(36,54,40,59), (1,58,14,53)(2,59,15,54)(3,60,16,46)(4,61,17,47)(5,62,18,48)(6,63,10,49)(7,55,11,50)(8,56,12,51)(9,57,13,52)(19,37,71,33)(20,38,72,34)(21,39,64,35)(22,40,65,36)(23,41,66,28)(24,42,67,29)(25,43,68,30)(26,44,69,31)(27,45,70,32), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,43,59)(20,44,60)(21,45,61)(22,37,62)(23,38,63)(24,39,55)(25,40,56)(26,41,57)(27,42,58)(28,52,69)(29,53,70)(30,54,71)(31,46,72)(32,47,64)(33,48,65)(34,49,66)(35,50,67)(36,51,68) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,21,14,64),(2,22,15,65),(3,23,16,66),(4,24,17,67),(5,25,18,68),(6,26,10,69),(7,27,11,70),(8,19,12,71),(9,20,13,72),(28,46,41,60),(29,47,42,61),(30,48,43,62),(31,49,44,63),(32,50,45,55),(33,51,37,56),(34,52,38,57),(35,53,39,58),(36,54,40,59)], [(1,58,14,53),(2,59,15,54),(3,60,16,46),(4,61,17,47),(5,62,18,48),(6,63,10,49),(7,55,11,50),(8,56,12,51),(9,57,13,52),(19,37,71,33),(20,38,72,34),(21,39,64,35),(22,40,65,36),(23,41,66,28),(24,42,67,29),(25,43,68,30),(26,44,69,31),(27,45,70,32)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,43,59),(20,44,60),(21,45,61),(22,37,62),(23,38,63),(24,39,55),(25,40,56),(26,41,57),(27,42,58),(28,52,69),(29,53,70),(30,54,71),(31,46,72),(32,47,64),(33,48,65),(34,49,66),(35,50,67),(36,51,68)]])

C9×SL2(𝔽3) is a maximal subgroup of   C18.5S4  C18.6S4  Dic9.2A4

63 conjugacy classes

class 1  2 3A3B3C···3H 4 6A6B6C···6H9A···9F9G···9R12A12B18A···18F18G···18R36A···36F
order12333···34666···69···99···9121218···1818···1836···36
size11114···46114···41···14···4661···14···46···6

63 irreducible representations

dim111112222333
type+-+
imageC1C3C3C3C9SL2(𝔽3)SL2(𝔽3)C3×SL2(𝔽3)C9×SL2(𝔽3)A4C3×A4C9×A4
kernelC9×SL2(𝔽3)Q8⋊C9Q8×C9C3×SL2(𝔽3)SL2(𝔽3)C9C9C3C1C18C6C2
# reps14221812618126

Matrix representation of C9×SL2(𝔽3) in GL2(𝔽19) generated by

160
016
,
010
170
,
124
167
,
79
011
G:=sub<GL(2,GF(19))| [16,0,0,16],[0,17,10,0],[12,16,4,7],[7,0,9,11] >;

C9×SL2(𝔽3) in GAP, Magma, Sage, TeX

C_9\times {\rm SL}_2({\mathbb F}_3)
% in TeX

G:=Group("C9xSL(2,3)");
// GroupNames label

G:=SmallGroup(216,38);
// by ID

G=gap.SmallGroup(216,38);
# by ID

G:=PCGroup([6,-3,-3,-3,-2,2,-2,43,1299,117,2434,202,88]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^4=d^3=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=c,d*c*d^-1=b*c>;
// generators/relations

Export

Subgroup lattice of C9×SL2(𝔽3) in TeX

׿
×
𝔽