extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×C3⋊S3)⋊1C4 = C3×C6.D12 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | | (C6xC3:S3):1C4 | 432,427 |
(C6×C3⋊S3)⋊2C4 = C62.78D6 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 144 | | (C6xC3:S3):2C4 | 432,450 |
(C6×C3⋊S3)⋊3C4 = C62.84D6 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | | (C6xC3:S3):3C4 | 432,461 |
(C6×C3⋊S3)⋊4C4 = C3×C6.11D12 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 144 | | (C6xC3:S3):4C4 | 432,490 |
(C6×C3⋊S3)⋊5C4 = C3×C62⋊C4 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 24 | 4 | (C6xC3:S3):5C4 | 432,634 |
(C6×C3⋊S3)⋊6C4 = C62⋊11Dic3 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 24 | 4 | (C6xC3:S3):6C4 | 432,641 |
(C6×C3⋊S3)⋊7C4 = C6×C6.D6 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | | (C6xC3:S3):7C4 | 432,654 |
(C6×C3⋊S3)⋊8C4 = C2×Dic3×C3⋊S3 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 144 | | (C6xC3:S3):8C4 | 432,677 |
(C6×C3⋊S3)⋊9C4 = C2×C33⋊9(C2×C4) | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | | (C6xC3:S3):9C4 | 432,692 |
(C6×C3⋊S3)⋊10C4 = C2×C6×C32⋊C4 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | | (C6xC3:S3):10C4 | 432,765 |
(C6×C3⋊S3)⋊11C4 = C22×C33⋊C4 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | | (C6xC3:S3):11C4 | 432,766 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C6×C3⋊S3).1C4 = C6×F9 | φ: C4/C1 → C4 ⊆ Out C6×C3⋊S3 | 48 | 8 | (C6xC3:S3).1C4 | 432,751 |
(C6×C3⋊S3).2C4 = C2×C3⋊F9 | φ: C4/C1 → C4 ⊆ Out C6×C3⋊S3 | 48 | 8 | (C6xC3:S3).2C4 | 432,752 |
(C6×C3⋊S3).3C4 = C3×C12.29D6 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | 4 | (C6xC3:S3).3C4 | 432,415 |
(C6×C3⋊S3).4C4 = C3×C12.31D6 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | 4 | (C6xC3:S3).4C4 | 432,417 |
(C6×C3⋊S3).5C4 = C3⋊S3×C3⋊C8 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 144 | | (C6xC3:S3).5C4 | 432,431 |
(C6×C3⋊S3).6C4 = C33⋊8M4(2) | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 144 | | (C6xC3:S3).6C4 | 432,434 |
(C6×C3⋊S3).7C4 = C12.93S32 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | 4 | (C6xC3:S3).7C4 | 432,455 |
(C6×C3⋊S3).8C4 = C33⋊10M4(2) | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | 4 | (C6xC3:S3).8C4 | 432,456 |
(C6×C3⋊S3).9C4 = C3×C24⋊S3 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 144 | | (C6xC3:S3).9C4 | 432,481 |
(C6×C3⋊S3).10C4 = C3×C3⋊S3⋊3C8 | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | 4 | (C6xC3:S3).10C4 | 432,628 |
(C6×C3⋊S3).11C4 = C3×C32⋊M4(2) | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | 4 | (C6xC3:S3).11C4 | 432,629 |
(C6×C3⋊S3).12C4 = C33⋊7(C2×C8) | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | 4 | (C6xC3:S3).12C4 | 432,635 |
(C6×C3⋊S3).13C4 = C33⋊4M4(2) | φ: C4/C2 → C2 ⊆ Out C6×C3⋊S3 | 48 | 4 | (C6xC3:S3).13C4 | 432,636 |
(C6×C3⋊S3).14C4 = C3⋊S3×C24 | φ: trivial image | 144 | | (C6xC3:S3).14C4 | 432,480 |