Extensions 1→N→G→Q→1 with N=C3xC18 and Q=C2xC4

Direct product G=NxQ with N=C3xC18 and Q=C2xC4
dρLabelID
C2xC6xC36432C2xC6xC36432,400

Semidirect products G=N:Q with N=C3xC18 and Q=C2xC4
extensionφ:Q→Aut NdρLabelID
(C3xC18):1(C2xC4) = C2xDic3xD9φ: C2xC4/C2C22 ⊆ Aut C3xC18144(C3xC18):1(C2xC4)432,304
(C3xC18):2(C2xC4) = C2xC18.D6φ: C2xC4/C2C22 ⊆ Aut C3xC1872(C3xC18):2(C2xC4)432,306
(C3xC18):3(C2xC4) = C2xS3xDic9φ: C2xC4/C2C22 ⊆ Aut C3xC18144(C3xC18):3(C2xC4)432,308
(C3xC18):4(C2xC4) = S3xC2xC36φ: C2xC4/C4C2 ⊆ Aut C3xC18144(C3xC18):4(C2xC4)432,345
(C3xC18):5(C2xC4) = D9xC2xC12φ: C2xC4/C4C2 ⊆ Aut C3xC18144(C3xC18):5(C2xC4)432,342
(C3xC18):6(C2xC4) = C2xC4xC9:S3φ: C2xC4/C4C2 ⊆ Aut C3xC18216(C3xC18):6(C2xC4)432,381
(C3xC18):7(C2xC4) = Dic3xC2xC18φ: C2xC4/C22C2 ⊆ Aut C3xC18144(C3xC18):7(C2xC4)432,373
(C3xC18):8(C2xC4) = C2xC6xDic9φ: C2xC4/C22C2 ⊆ Aut C3xC18144(C3xC18):8(C2xC4)432,372
(C3xC18):9(C2xC4) = C22xC9:Dic3φ: C2xC4/C22C2 ⊆ Aut C3xC18432(C3xC18):9(C2xC4)432,396

Non-split extensions G=N.Q with N=C3xC18 and Q=C2xC4
extensionφ:Q→Aut NdρLabelID
(C3xC18).1(C2xC4) = D9xC3:C8φ: C2xC4/C2C22 ⊆ Aut C3xC181444(C3xC18).1(C2xC4)432,58
(C3xC18).2(C2xC4) = C36.38D6φ: C2xC4/C2C22 ⊆ Aut C3xC18724(C3xC18).2(C2xC4)432,59
(C3xC18).3(C2xC4) = C36.39D6φ: C2xC4/C2C22 ⊆ Aut C3xC181444(C3xC18).3(C2xC4)432,60
(C3xC18).4(C2xC4) = C36.40D6φ: C2xC4/C2C22 ⊆ Aut C3xC18724(C3xC18).4(C2xC4)432,61
(C3xC18).5(C2xC4) = S3xC9:C8φ: C2xC4/C2C22 ⊆ Aut C3xC181444(C3xC18).5(C2xC4)432,66
(C3xC18).6(C2xC4) = D6.Dic9φ: C2xC4/C2C22 ⊆ Aut C3xC181444(C3xC18).6(C2xC4)432,67
(C3xC18).7(C2xC4) = Dic3xDic9φ: C2xC4/C2C22 ⊆ Aut C3xC18144(C3xC18).7(C2xC4)432,87
(C3xC18).8(C2xC4) = Dic9:Dic3φ: C2xC4/C2C22 ⊆ Aut C3xC18144(C3xC18).8(C2xC4)432,88
(C3xC18).9(C2xC4) = C18.Dic6φ: C2xC4/C2C22 ⊆ Aut C3xC18144(C3xC18).9(C2xC4)432,89
(C3xC18).10(C2xC4) = Dic3:Dic9φ: C2xC4/C2C22 ⊆ Aut C3xC18144(C3xC18).10(C2xC4)432,90
(C3xC18).11(C2xC4) = D18:Dic3φ: C2xC4/C2C22 ⊆ Aut C3xC18144(C3xC18).11(C2xC4)432,91
(C3xC18).12(C2xC4) = C6.18D36φ: C2xC4/C2C22 ⊆ Aut C3xC1872(C3xC18).12(C2xC4)432,92
(C3xC18).13(C2xC4) = D6:Dic9φ: C2xC4/C2C22 ⊆ Aut C3xC18144(C3xC18).13(C2xC4)432,93
(C3xC18).14(C2xC4) = S3xC72φ: C2xC4/C4C2 ⊆ Aut C3xC181442(C3xC18).14(C2xC4)432,109
(C3xC18).15(C2xC4) = C9xC8:S3φ: C2xC4/C4C2 ⊆ Aut C3xC181442(C3xC18).15(C2xC4)432,110
(C3xC18).16(C2xC4) = C9xDic3:C4φ: C2xC4/C4C2 ⊆ Aut C3xC18144(C3xC18).16(C2xC4)432,132
(C3xC18).17(C2xC4) = C9xD6:C4φ: C2xC4/C4C2 ⊆ Aut C3xC18144(C3xC18).17(C2xC4)432,135
(C3xC18).18(C2xC4) = D9xC24φ: C2xC4/C4C2 ⊆ Aut C3xC181442(C3xC18).18(C2xC4)432,105
(C3xC18).19(C2xC4) = C3xC8:D9φ: C2xC4/C4C2 ⊆ Aut C3xC181442(C3xC18).19(C2xC4)432,106
(C3xC18).20(C2xC4) = C12xDic9φ: C2xC4/C4C2 ⊆ Aut C3xC18144(C3xC18).20(C2xC4)432,128
(C3xC18).21(C2xC4) = C3xDic9:C4φ: C2xC4/C4C2 ⊆ Aut C3xC18144(C3xC18).21(C2xC4)432,129
(C3xC18).22(C2xC4) = C3xD18:C4φ: C2xC4/C4C2 ⊆ Aut C3xC18144(C3xC18).22(C2xC4)432,134
(C3xC18).23(C2xC4) = C8xC9:S3φ: C2xC4/C4C2 ⊆ Aut C3xC18216(C3xC18).23(C2xC4)432,169
(C3xC18).24(C2xC4) = C72:S3φ: C2xC4/C4C2 ⊆ Aut C3xC18216(C3xC18).24(C2xC4)432,170
(C3xC18).25(C2xC4) = C6.Dic18φ: C2xC4/C4C2 ⊆ Aut C3xC18432(C3xC18).25(C2xC4)432,181
(C3xC18).26(C2xC4) = C6.11D36φ: C2xC4/C4C2 ⊆ Aut C3xC18216(C3xC18).26(C2xC4)432,183
(C3xC18).27(C2xC4) = C18xC3:C8φ: C2xC4/C22C2 ⊆ Aut C3xC18144(C3xC18).27(C2xC4)432,126
(C3xC18).28(C2xC4) = C9xC4.Dic3φ: C2xC4/C22C2 ⊆ Aut C3xC18722(C3xC18).28(C2xC4)432,127
(C3xC18).29(C2xC4) = Dic3xC36φ: C2xC4/C22C2 ⊆ Aut C3xC18144(C3xC18).29(C2xC4)432,131
(C3xC18).30(C2xC4) = C9xC4:Dic3φ: C2xC4/C22C2 ⊆ Aut C3xC18144(C3xC18).30(C2xC4)432,133
(C3xC18).31(C2xC4) = C9xC6.D4φ: C2xC4/C22C2 ⊆ Aut C3xC1872(C3xC18).31(C2xC4)432,165
(C3xC18).32(C2xC4) = C6xC9:C8φ: C2xC4/C22C2 ⊆ Aut C3xC18144(C3xC18).32(C2xC4)432,124
(C3xC18).33(C2xC4) = C3xC4.Dic9φ: C2xC4/C22C2 ⊆ Aut C3xC18722(C3xC18).33(C2xC4)432,125
(C3xC18).34(C2xC4) = C3xC4:Dic9φ: C2xC4/C22C2 ⊆ Aut C3xC18144(C3xC18).34(C2xC4)432,130
(C3xC18).35(C2xC4) = C3xC18.D4φ: C2xC4/C22C2 ⊆ Aut C3xC1872(C3xC18).35(C2xC4)432,164
(C3xC18).36(C2xC4) = C2xC36.S3φ: C2xC4/C22C2 ⊆ Aut C3xC18432(C3xC18).36(C2xC4)432,178
(C3xC18).37(C2xC4) = C36.69D6φ: C2xC4/C22C2 ⊆ Aut C3xC18216(C3xC18).37(C2xC4)432,179
(C3xC18).38(C2xC4) = C4xC9:Dic3φ: C2xC4/C22C2 ⊆ Aut C3xC18432(C3xC18).38(C2xC4)432,180
(C3xC18).39(C2xC4) = C36:Dic3φ: C2xC4/C22C2 ⊆ Aut C3xC18432(C3xC18).39(C2xC4)432,182
(C3xC18).40(C2xC4) = C62.127D6φ: C2xC4/C22C2 ⊆ Aut C3xC18216(C3xC18).40(C2xC4)432,198
(C3xC18).41(C2xC4) = C22:C4xC3xC9central extension (φ=1)216(C3xC18).41(C2xC4)432,203
(C3xC18).42(C2xC4) = C4:C4xC3xC9central extension (φ=1)432(C3xC18).42(C2xC4)432,206
(C3xC18).43(C2xC4) = M4(2)xC3xC9central extension (φ=1)216(C3xC18).43(C2xC4)432,212

׿
x
:
Z
F
o
wr
Q
<