Extensions 1→N→G→Q→1 with N=D4xC9 and Q=C6

Direct product G=NxQ with N=D4xC9 and Q=C6
dρLabelID
D4xC3xC18216D4xC3xC18432,403

Semidirect products G=N:Q with N=D4xC9 and Q=C6
extensionφ:Q→Out NdρLabelID
(D4xC9):1C6 = D36:C6φ: C6/C1C6 ⊆ Out D4xC97212+(D4xC9):1C6432,155
(D4xC9):2C6 = D4xC9:C6φ: C6/C1C6 ⊆ Out D4xC93612+(D4xC9):2C6432,362
(D4xC9):3C6 = Dic18:2C6φ: C6/C1C6 ⊆ Out D4xC97212-(D4xC9):3C6432,363
(D4xC9):4C6 = D8x3- 1+2φ: C6/C1C6 ⊆ Out D4xC9726(D4xC9):4C6432,217
(D4xC9):5C6 = C2xD4x3- 1+2φ: C6/C2C3 ⊆ Out D4xC972(D4xC9):5C6432,405
(D4xC9):6C6 = C4oD4x3- 1+2φ: C6/C2C3 ⊆ Out D4xC9726(D4xC9):6C6432,411
(D4xC9):7C6 = C3xD4:D9φ: C6/C3C2 ⊆ Out D4xC9724(D4xC9):7C6432,149
(D4xC9):8C6 = C3xD4xD9φ: C6/C3C2 ⊆ Out D4xC9724(D4xC9):8C6432,356
(D4xC9):9C6 = C3xD4:2D9φ: C6/C3C2 ⊆ Out D4xC9724(D4xC9):9C6432,357
(D4xC9):10C6 = D8xC3xC9φ: C6/C3C2 ⊆ Out D4xC9216(D4xC9):10C6432,215
(D4xC9):11C6 = C4oD4xC3xC9φ: trivial image216(D4xC9):11C6432,409

Non-split extensions G=N.Q with N=D4xC9 and Q=C6
extensionφ:Q→Out NdρLabelID
(D4xC9).1C6 = Dic18:C6φ: C6/C1C6 ⊆ Out D4xC97212-(D4xC9).1C6432,154
(D4xC9).2C6 = SD16x3- 1+2φ: C6/C1C6 ⊆ Out D4xC9726(D4xC9).2C6432,220
(D4xC9).3C6 = C3xD4.D9φ: C6/C3C2 ⊆ Out D4xC9724(D4xC9).3C6432,148
(D4xC9).4C6 = D8xC27φ: C6/C3C2 ⊆ Out D4xC92162(D4xC9).4C6432,25
(D4xC9).5C6 = SD16xC27φ: C6/C3C2 ⊆ Out D4xC92162(D4xC9).5C6432,26
(D4xC9).6C6 = SD16xC3xC9φ: C6/C3C2 ⊆ Out D4xC9216(D4xC9).6C6432,218
(D4xC9).7C6 = D4xC54φ: trivial image216(D4xC9).7C6432,54
(D4xC9).8C6 = C4oD4xC27φ: trivial image2162(D4xC9).8C6432,56

׿
x
:
Z
F
o
wr
Q
<