extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C3⋊S3)⋊1D6 = C3⋊S3⋊D12 | φ: D6/C1 → D6 ⊆ Out C2×C3⋊S3 | 36 | 12+ | (C2xC3:S3):1D6 | 432,301 |
(C2×C3⋊S3)⋊2D6 = C12.86S32 | φ: D6/C1 → D6 ⊆ Out C2×C3⋊S3 | 36 | 6+ | (C2xC3:S3):2D6 | 432,302 |
(C2×C3⋊S3)⋊3D6 = C62⋊2D6 | φ: D6/C1 → D6 ⊆ Out C2×C3⋊S3 | 36 | 6 | (C2xC3:S3):3D6 | 432,324 |
(C2×C3⋊S3)⋊4D6 = C2×He3⋊2D4 | φ: D6/C2 → S3 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3):4D6 | 432,320 |
(C2×C3⋊S3)⋊5D6 = C2×He3⋊3D4 | φ: D6/C2 → S3 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3):5D6 | 432,322 |
(C2×C3⋊S3)⋊6D6 = C62⋊D6 | φ: D6/C2 → S3 ⊆ Out C2×C3⋊S3 | 36 | 12+ | (C2xC3:S3):6D6 | 432,323 |
(C2×C3⋊S3)⋊7D6 = C22×C32⋊D6 | φ: D6/C2 → S3 ⊆ Out C2×C3⋊S3 | 36 | | (C2xC3:S3):7D6 | 432,545 |
(C2×C3⋊S3)⋊8D6 = S3×D6⋊S3 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3):8D6 | 432,597 |
(C2×C3⋊S3)⋊9D6 = D6⋊S32 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3):9D6 | 432,600 |
(C2×C3⋊S3)⋊10D6 = C3⋊S3⋊4D12 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3):10D6 | 432,602 |
(C2×C3⋊S3)⋊11D6 = C12⋊3S32 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3):11D6 | 432,691 |
(C2×C3⋊S3)⋊12D6 = S3×C3⋊D12 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3):12D6 | 432,598 |
(C2×C3⋊S3)⋊13D6 = (S3×C6)⋊D6 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3):13D6 | 432,601 |
(C2×C3⋊S3)⋊14D6 = S3×C12⋊S3 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3):14D6 | 432,671 |
(C2×C3⋊S3)⋊15D6 = C12⋊S32 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3):15D6 | 432,673 |
(C2×C3⋊S3)⋊16D6 = S3×C32⋊7D4 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3):16D6 | 432,684 |
(C2×C3⋊S3)⋊17D6 = C62⋊23D6 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 36 | | (C2xC3:S3):17D6 | 432,686 |
(C2×C3⋊S3)⋊18D6 = C2×S33 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3):18D6 | 432,759 |
(C2×C3⋊S3)⋊19D6 = C2×C33⋊6D4 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3):19D6 | 432,680 |
(C2×C3⋊S3)⋊20D6 = C2×C33⋊8D4 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3):20D6 | 432,682 |
(C2×C3⋊S3)⋊21D6 = C3⋊S3×C3⋊D4 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3):21D6 | 432,685 |
(C2×C3⋊S3)⋊22D6 = C2×C33⋊9D4 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3):22D6 | 432,694 |
(C2×C3⋊S3)⋊23D6 = C62⋊24D6 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3):23D6 | 432,696 |
(C2×C3⋊S3)⋊24D6 = C22×C32⋊4D6 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3):24D6 | 432,769 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C3⋊S3).1D6 = C12⋊S3⋊S3 | φ: D6/C1 → D6 ⊆ Out C2×C3⋊S3 | 72 | 12+ | (C2xC3:S3).1D6 | 432,295 |
(C2×C3⋊S3).2D6 = C12.84S32 | φ: D6/C1 → D6 ⊆ Out C2×C3⋊S3 | 72 | 6 | (C2xC3:S3).2D6 | 432,296 |
(C2×C3⋊S3).3D6 = C62.8D6 | φ: D6/C1 → D6 ⊆ Out C2×C3⋊S3 | 72 | 12- | (C2xC3:S3).3D6 | 432,318 |
(C2×C3⋊S3).4D6 = C62.9D6 | φ: D6/C1 → D6 ⊆ Out C2×C3⋊S3 | 72 | 6 | (C2xC3:S3).4D6 | 432,319 |
(C2×C3⋊S3).5D6 = C3⋊S3⋊Dic6 | φ: D6/C2 → S3 ⊆ Out C2×C3⋊S3 | 72 | 12- | (C2xC3:S3).5D6 | 432,294 |
(C2×C3⋊S3).6D6 = C12.91S32 | φ: D6/C2 → S3 ⊆ Out C2×C3⋊S3 | 72 | 6 | (C2xC3:S3).6D6 | 432,297 |
(C2×C3⋊S3).7D6 = C12.S32 | φ: D6/C2 → S3 ⊆ Out C2×C3⋊S3 | 72 | 12- | (C2xC3:S3).7D6 | 432,299 |
(C2×C3⋊S3).8D6 = C4×C32⋊D6 | φ: D6/C2 → S3 ⊆ Out C2×C3⋊S3 | 36 | 6 | (C2xC3:S3).8D6 | 432,300 |
(C2×C3⋊S3).9D6 = C2×C6.S32 | φ: D6/C2 → S3 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3).9D6 | 432,317 |
(C2×C3⋊S3).10D6 = C3⋊S3.2D12 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).10D6 | 432,579 |
(C2×C3⋊S3).11D6 = S32⋊Dic3 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).11D6 | 432,580 |
(C2×C3⋊S3).12D6 = C33⋊C4⋊C4 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).12D6 | 432,581 |
(C2×C3⋊S3).13D6 = (C3×C6).8D12 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).13D6 | 432,586 |
(C2×C3⋊S3).14D6 = (C3×C6).9D12 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).14D6 | 432,587 |
(C2×C3⋊S3).15D6 = C6.PSU3(𝔽2) | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8 | (C2xC3:S3).15D6 | 432,592 |
(C2×C3⋊S3).16D6 = C6.2PSU3(𝔽2) | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8 | (C2xC3:S3).16D6 | 432,593 |
(C2×C3⋊S3).17D6 = D6.4S32 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).17D6 | 432,608 |
(C2×C3⋊S3).18D6 = D6.3S32 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).18D6 | 432,609 |
(C2×C3⋊S3).19D6 = Dic3.S32 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).19D6 | 432,612 |
(C2×C3⋊S3).20D6 = C62.96D6 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).20D6 | 432,693 |
(C2×C3⋊S3).21D6 = C2×C33⋊D4 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).21D6 | 432,755 |
(C2×C3⋊S3).22D6 = C2×C32⋊2D12 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).22D6 | 432,756 |
(C2×C3⋊S3).23D6 = C2×C33⋊Q8 | φ: D6/C3 → C22 ⊆ Out C2×C3⋊S3 | 48 | 8 | (C2xC3:S3).23D6 | 432,758 |
(C2×C3⋊S3).24D6 = Dic3×C32⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).24D6 | 432,567 |
(C2×C3⋊S3).25D6 = D6⋊(C32⋊C4) | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).25D6 | 432,568 |
(C2×C3⋊S3).26D6 = C33⋊(C4⋊C4) | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).26D6 | 432,569 |
(C2×C3⋊S3).27D6 = S32×Dic3 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).27D6 | 432,594 |
(C2×C3⋊S3).28D6 = S3×C6.D6 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).28D6 | 432,595 |
(C2×C3⋊S3).29D6 = Dic3⋊6S32 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).29D6 | 432,596 |
(C2×C3⋊S3).30D6 = D6⋊4S32 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).30D6 | 432,599 |
(C2×C3⋊S3).31D6 = C33⋊5(C2×Q8) | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).31D6 | 432,604 |
(C2×C3⋊S3).32D6 = D6.S32 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).32D6 | 432,607 |
(C2×C3⋊S3).33D6 = D6.6S32 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 48 | 8- | (C2xC3:S3).33D6 | 432,611 |
(C2×C3⋊S3).34D6 = C12.39S32 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3).34D6 | 432,664 |
(C2×C3⋊S3).35D6 = C12.57S32 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).35D6 | 432,668 |
(C2×C3⋊S3).36D6 = C62.91D6 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3).36D6 | 432,676 |
(C2×C3⋊S3).37D6 = C62.93D6 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3).37D6 | 432,678 |
(C2×C3⋊S3).38D6 = C2×S3×C32⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×C3⋊S3 | 24 | 8+ | (C2xC3:S3).38D6 | 432,753 |
(C2×C3⋊S3).39D6 = C4×C33⋊C4 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).39D6 | 432,637 |
(C2×C3⋊S3).40D6 = C33⋊9(C4⋊C4) | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).40D6 | 432,638 |
(C2×C3⋊S3).41D6 = C62⋊11Dic3 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 24 | 4 | (C2xC3:S3).41D6 | 432,641 |
(C2×C3⋊S3).42D6 = (C3×D12)⋊S3 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 144 | | (C2xC3:S3).42D6 | 432,661 |
(C2×C3⋊S3).43D6 = C12.40S32 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3).43D6 | 432,665 |
(C2×C3⋊S3).44D6 = C12.73S32 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 72 | | (C2xC3:S3).44D6 | 432,667 |
(C2×C3⋊S3).45D6 = C3⋊S3⋊4Dic6 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).45D6 | 432,687 |
(C2×C3⋊S3).46D6 = C12⋊S3⋊12S3 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).46D6 | 432,688 |
(C2×C3⋊S3).47D6 = C12.95S32 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).47D6 | 432,689 |
(C2×C3⋊S3).48D6 = C4×C32⋊4D6 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | 4 | (C2xC3:S3).48D6 | 432,690 |
(C2×C3⋊S3).49D6 = C2×C33⋊9(C2×C4) | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).49D6 | 432,692 |
(C2×C3⋊S3).50D6 = C22×C33⋊C4 | φ: D6/C6 → C2 ⊆ Out C2×C3⋊S3 | 48 | | (C2xC3:S3).50D6 | 432,766 |
(C2×C3⋊S3).51D6 = C3⋊S3×Dic6 | φ: trivial image | 144 | | (C2xC3:S3).51D6 | 432,663 |
(C2×C3⋊S3).52D6 = C4×S3×C3⋊S3 | φ: trivial image | 72 | | (C2xC3:S3).52D6 | 432,670 |
(C2×C3⋊S3).53D6 = C3⋊S3×D12 | φ: trivial image | 72 | | (C2xC3:S3).53D6 | 432,672 |
(C2×C3⋊S3).54D6 = C2×Dic3×C3⋊S3 | φ: trivial image | 144 | | (C2xC3:S3).54D6 | 432,677 |