Extensions 1→N→G→Q→1 with N=C3xSL2(F3) and Q=C6

Direct product G=NxQ with N=C3xSL2(F3) and Q=C6
dρLabelID
C3xC6xSL2(F3)144C3xC6xSL(2,3)432,698

Semidirect products G=N:Q with N=C3xSL2(F3) and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xSL2(F3)):C6 = C32:2GL2(F3)φ: C6/C1C6 ⊆ Out C3xSL2(F3)7212+(C3xSL(2,3)):C6432,248
(C3xSL2(F3)):2C6 = C2xQ8:He3φ: C6/C2C3 ⊆ Out C3xSL2(F3)144(C3xSL(2,3)):2C6432,336
(C3xSL2(F3)):3C6 = C4oD4:He3φ: C6/C2C3 ⊆ Out C3xSL2(F3)726(C3xSL(2,3)):3C6432,339
(C3xSL2(F3)):4C6 = C3xC6.6S4φ: C6/C3C2 ⊆ Out C3xSL2(F3)484(C3xSL(2,3)):4C6432,617
(C3xSL2(F3)):5C6 = C3xDic3.A4φ: C6/C3C2 ⊆ Out C3xSL2(F3)484(C3xSL(2,3)):5C6432,622
(C3xSL2(F3)):6C6 = C3xS3xSL2(F3)φ: C6/C3C2 ⊆ Out C3xSL2(F3)484(C3xSL(2,3)):6C6432,623
(C3xSL2(F3)):7C6 = C32xGL2(F3)φ: C6/C3C2 ⊆ Out C3xSL2(F3)72(C3xSL(2,3)):7C6432,614
(C3xSL2(F3)):8C6 = C32xC4.A4φ: trivial image144(C3xSL(2,3)):8C6432,699

Non-split extensions G=N.Q with N=C3xSL2(F3) and Q=C6
extensionφ:Q→Out NdρLabelID
(C3xSL2(F3)).C6 = C32:CSU2(F3)φ: C6/C1C6 ⊆ Out C3xSL2(F3)14412-(C3xSL(2,3)).C6432,247
(C3xSL2(F3)).2C6 = C2xC18.A4φ: C6/C2C3 ⊆ Out C3xSL2(F3)144(C3xSL(2,3)).2C6432,328
(C3xSL2(F3)).3C6 = C36.A4φ: C6/C2C3 ⊆ Out C3xSL2(F3)1446(C3xSL(2,3)).3C6432,330
(C3xSL2(F3)).4C6 = C3xC6.5S4φ: C6/C3C2 ⊆ Out C3xSL2(F3)484(C3xSL(2,3)).4C6432,616
(C3xSL2(F3)).5C6 = C9xCSU2(F3)φ: C6/C3C2 ⊆ Out C3xSL2(F3)1442(C3xSL(2,3)).5C6432,240
(C3xSL2(F3)).6C6 = C9xGL2(F3)φ: C6/C3C2 ⊆ Out C3xSL2(F3)722(C3xSL(2,3)).6C6432,241
(C3xSL2(F3)).7C6 = C32xCSU2(F3)φ: C6/C3C2 ⊆ Out C3xSL2(F3)144(C3xSL(2,3)).7C6432,613
(C3xSL2(F3)).8C6 = C18xSL2(F3)φ: trivial image144(C3xSL(2,3)).8C6432,327
(C3xSL2(F3)).9C6 = C9xC4.A4φ: trivial image1442(C3xSL(2,3)).9C6432,329

׿
x
:
Z
F
o
wr
Q
<