Copied to
clipboard

G = C2×C18.A4order 432 = 24·33

Direct product of C2 and C18.A4

direct product, non-abelian, soluble

Aliases: C2×C18.A4, C18⋊SL2(𝔽3), Q8⋊C92C6, (Q8×C9)⋊8C6, C6.21(C6×A4), C18.5(C2×A4), (C2×C18).5A4, (Q8×C18)⋊2C3, C22.2(C9⋊A4), C92(C2×SL2(𝔽3)), (C6×Q8).2C32, (C6×SL2(𝔽3)).C3, (C2×Q8)⋊13- 1+2, C6.2(C3×SL2(𝔽3)), C3.3(C6×SL2(𝔽3)), Q81(C2×3- 1+2), (C3×SL2(𝔽3)).2C6, C2.2(C2×C9⋊A4), (C2×Q8⋊C9)⋊1C3, (C2×C6).18(C3×A4), (C3×Q8).3(C3×C6), SmallGroup(432,328)

Series: Derived Chief Lower central Upper central

C1C2C3×Q8 — C2×C18.A4
C1C2Q8C3×Q8Q8×C9C18.A4 — C2×C18.A4
Q8C3×Q8 — C2×C18.A4
C1C2×C6C2×C18

Generators and relations for C2×C18.A4
 G = < a,b,c,d,e | a2=b18=e3=1, c2=d2=b9, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b7, dcd-1=b9c, ece-1=b9cd, ede-1=c >

Subgroups: 211 in 68 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2×C4, Q8, Q8, C9, C9, C32, C12, C2×C6, C2×C6, C2×Q8, C18, C18, C18, C3×C6, SL2(𝔽3), C2×C12, C3×Q8, C3×Q8, 3- 1+2, C36, C2×C18, C2×C18, C62, C2×SL2(𝔽3), C6×Q8, C2×3- 1+2, Q8⋊C9, C2×C36, Q8×C9, Q8×C9, C3×SL2(𝔽3), C22×3- 1+2, C2×Q8⋊C9, Q8×C18, C6×SL2(𝔽3), C18.A4, C2×C18.A4
Quotients: C1, C2, C3, C6, C32, A4, C3×C6, SL2(𝔽3), C2×A4, 3- 1+2, C3×A4, C2×SL2(𝔽3), C2×3- 1+2, C3×SL2(𝔽3), C6×A4, C9⋊A4, C6×SL2(𝔽3), C18.A4, C2×C9⋊A4, C2×C18.A4

Smallest permutation representation of C2×C18.A4
On 144 points
Generators in S144
(1 139)(2 140)(3 141)(4 142)(5 143)(6 144)(7 127)(8 128)(9 129)(10 130)(11 131)(12 132)(13 133)(14 134)(15 135)(16 136)(17 137)(18 138)(19 102)(20 103)(21 104)(22 105)(23 106)(24 107)(25 108)(26 91)(27 92)(28 93)(29 94)(30 95)(31 96)(32 97)(33 98)(34 99)(35 100)(36 101)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 109)(47 110)(48 111)(49 112)(50 113)(51 114)(52 115)(53 116)(54 117)(55 73)(56 74)(57 75)(58 76)(59 77)(60 78)(61 79)(62 80)(63 81)(64 82)(65 83)(66 84)(67 85)(68 86)(69 87)(70 88)(71 89)(72 90)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 117 10 126)(2 118 11 109)(3 119 12 110)(4 120 13 111)(5 121 14 112)(6 122 15 113)(7 123 16 114)(8 124 17 115)(9 125 18 116)(19 87 28 78)(20 88 29 79)(21 89 30 80)(22 90 31 81)(23 73 32 82)(24 74 33 83)(25 75 34 84)(26 76 35 85)(27 77 36 86)(37 131 46 140)(38 132 47 141)(39 133 48 142)(40 134 49 143)(41 135 50 144)(42 136 51 127)(43 137 52 128)(44 138 53 129)(45 139 54 130)(55 97 64 106)(56 98 65 107)(57 99 66 108)(58 100 67 91)(59 101 68 92)(60 102 69 93)(61 103 70 94)(62 104 71 95)(63 105 72 96)
(1 35 10 26)(2 36 11 27)(3 19 12 28)(4 20 13 29)(5 21 14 30)(6 22 15 31)(7 23 16 32)(8 24 17 33)(9 25 18 34)(37 59 46 68)(38 60 47 69)(39 61 48 70)(40 62 49 71)(41 63 50 72)(42 64 51 55)(43 65 52 56)(44 66 53 57)(45 67 54 58)(73 123 82 114)(74 124 83 115)(75 125 84 116)(76 126 85 117)(77 109 86 118)(78 110 87 119)(79 111 88 120)(80 112 89 121)(81 113 90 122)(91 139 100 130)(92 140 101 131)(93 141 102 132)(94 142 103 133)(95 143 104 134)(96 144 105 135)(97 127 106 136)(98 128 107 137)(99 129 108 138)
(2 14 8)(3 9 15)(5 17 11)(6 12 18)(19 75 113)(20 88 120)(21 83 109)(22 78 116)(23 73 123)(24 86 112)(25 81 119)(26 76 126)(27 89 115)(28 84 122)(29 79 111)(30 74 118)(31 87 125)(32 82 114)(33 77 121)(34 90 110)(35 85 117)(36 80 124)(37 95 56)(38 108 63)(39 103 70)(40 98 59)(41 93 66)(42 106 55)(43 101 62)(44 96 69)(45 91 58)(46 104 65)(47 99 72)(48 94 61)(49 107 68)(50 102 57)(51 97 64)(52 92 71)(53 105 60)(54 100 67)(128 140 134)(129 135 141)(131 143 137)(132 138 144)

G:=sub<Sym(144)| (1,139)(2,140)(3,141)(4,142)(5,143)(6,144)(7,127)(8,128)(9,129)(10,130)(11,131)(12,132)(13,133)(14,134)(15,135)(16,136)(17,137)(18,138)(19,102)(20,103)(21,104)(22,105)(23,106)(24,107)(25,108)(26,91)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,101)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,79)(62,80)(63,81)(64,82)(65,83)(66,84)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,117,10,126)(2,118,11,109)(3,119,12,110)(4,120,13,111)(5,121,14,112)(6,122,15,113)(7,123,16,114)(8,124,17,115)(9,125,18,116)(19,87,28,78)(20,88,29,79)(21,89,30,80)(22,90,31,81)(23,73,32,82)(24,74,33,83)(25,75,34,84)(26,76,35,85)(27,77,36,86)(37,131,46,140)(38,132,47,141)(39,133,48,142)(40,134,49,143)(41,135,50,144)(42,136,51,127)(43,137,52,128)(44,138,53,129)(45,139,54,130)(55,97,64,106)(56,98,65,107)(57,99,66,108)(58,100,67,91)(59,101,68,92)(60,102,69,93)(61,103,70,94)(62,104,71,95)(63,105,72,96), (1,35,10,26)(2,36,11,27)(3,19,12,28)(4,20,13,29)(5,21,14,30)(6,22,15,31)(7,23,16,32)(8,24,17,33)(9,25,18,34)(37,59,46,68)(38,60,47,69)(39,61,48,70)(40,62,49,71)(41,63,50,72)(42,64,51,55)(43,65,52,56)(44,66,53,57)(45,67,54,58)(73,123,82,114)(74,124,83,115)(75,125,84,116)(76,126,85,117)(77,109,86,118)(78,110,87,119)(79,111,88,120)(80,112,89,121)(81,113,90,122)(91,139,100,130)(92,140,101,131)(93,141,102,132)(94,142,103,133)(95,143,104,134)(96,144,105,135)(97,127,106,136)(98,128,107,137)(99,129,108,138), (2,14,8)(3,9,15)(5,17,11)(6,12,18)(19,75,113)(20,88,120)(21,83,109)(22,78,116)(23,73,123)(24,86,112)(25,81,119)(26,76,126)(27,89,115)(28,84,122)(29,79,111)(30,74,118)(31,87,125)(32,82,114)(33,77,121)(34,90,110)(35,85,117)(36,80,124)(37,95,56)(38,108,63)(39,103,70)(40,98,59)(41,93,66)(42,106,55)(43,101,62)(44,96,69)(45,91,58)(46,104,65)(47,99,72)(48,94,61)(49,107,68)(50,102,57)(51,97,64)(52,92,71)(53,105,60)(54,100,67)(128,140,134)(129,135,141)(131,143,137)(132,138,144)>;

G:=Group( (1,139)(2,140)(3,141)(4,142)(5,143)(6,144)(7,127)(8,128)(9,129)(10,130)(11,131)(12,132)(13,133)(14,134)(15,135)(16,136)(17,137)(18,138)(19,102)(20,103)(21,104)(22,105)(23,106)(24,107)(25,108)(26,91)(27,92)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,101)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,109)(47,110)(48,111)(49,112)(50,113)(51,114)(52,115)(53,116)(54,117)(55,73)(56,74)(57,75)(58,76)(59,77)(60,78)(61,79)(62,80)(63,81)(64,82)(65,83)(66,84)(67,85)(68,86)(69,87)(70,88)(71,89)(72,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,117,10,126)(2,118,11,109)(3,119,12,110)(4,120,13,111)(5,121,14,112)(6,122,15,113)(7,123,16,114)(8,124,17,115)(9,125,18,116)(19,87,28,78)(20,88,29,79)(21,89,30,80)(22,90,31,81)(23,73,32,82)(24,74,33,83)(25,75,34,84)(26,76,35,85)(27,77,36,86)(37,131,46,140)(38,132,47,141)(39,133,48,142)(40,134,49,143)(41,135,50,144)(42,136,51,127)(43,137,52,128)(44,138,53,129)(45,139,54,130)(55,97,64,106)(56,98,65,107)(57,99,66,108)(58,100,67,91)(59,101,68,92)(60,102,69,93)(61,103,70,94)(62,104,71,95)(63,105,72,96), (1,35,10,26)(2,36,11,27)(3,19,12,28)(4,20,13,29)(5,21,14,30)(6,22,15,31)(7,23,16,32)(8,24,17,33)(9,25,18,34)(37,59,46,68)(38,60,47,69)(39,61,48,70)(40,62,49,71)(41,63,50,72)(42,64,51,55)(43,65,52,56)(44,66,53,57)(45,67,54,58)(73,123,82,114)(74,124,83,115)(75,125,84,116)(76,126,85,117)(77,109,86,118)(78,110,87,119)(79,111,88,120)(80,112,89,121)(81,113,90,122)(91,139,100,130)(92,140,101,131)(93,141,102,132)(94,142,103,133)(95,143,104,134)(96,144,105,135)(97,127,106,136)(98,128,107,137)(99,129,108,138), (2,14,8)(3,9,15)(5,17,11)(6,12,18)(19,75,113)(20,88,120)(21,83,109)(22,78,116)(23,73,123)(24,86,112)(25,81,119)(26,76,126)(27,89,115)(28,84,122)(29,79,111)(30,74,118)(31,87,125)(32,82,114)(33,77,121)(34,90,110)(35,85,117)(36,80,124)(37,95,56)(38,108,63)(39,103,70)(40,98,59)(41,93,66)(42,106,55)(43,101,62)(44,96,69)(45,91,58)(46,104,65)(47,99,72)(48,94,61)(49,107,68)(50,102,57)(51,97,64)(52,92,71)(53,105,60)(54,100,67)(128,140,134)(129,135,141)(131,143,137)(132,138,144) );

G=PermutationGroup([[(1,139),(2,140),(3,141),(4,142),(5,143),(6,144),(7,127),(8,128),(9,129),(10,130),(11,131),(12,132),(13,133),(14,134),(15,135),(16,136),(17,137),(18,138),(19,102),(20,103),(21,104),(22,105),(23,106),(24,107),(25,108),(26,91),(27,92),(28,93),(29,94),(30,95),(31,96),(32,97),(33,98),(34,99),(35,100),(36,101),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,109),(47,110),(48,111),(49,112),(50,113),(51,114),(52,115),(53,116),(54,117),(55,73),(56,74),(57,75),(58,76),(59,77),(60,78),(61,79),(62,80),(63,81),(64,82),(65,83),(66,84),(67,85),(68,86),(69,87),(70,88),(71,89),(72,90)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,117,10,126),(2,118,11,109),(3,119,12,110),(4,120,13,111),(5,121,14,112),(6,122,15,113),(7,123,16,114),(8,124,17,115),(9,125,18,116),(19,87,28,78),(20,88,29,79),(21,89,30,80),(22,90,31,81),(23,73,32,82),(24,74,33,83),(25,75,34,84),(26,76,35,85),(27,77,36,86),(37,131,46,140),(38,132,47,141),(39,133,48,142),(40,134,49,143),(41,135,50,144),(42,136,51,127),(43,137,52,128),(44,138,53,129),(45,139,54,130),(55,97,64,106),(56,98,65,107),(57,99,66,108),(58,100,67,91),(59,101,68,92),(60,102,69,93),(61,103,70,94),(62,104,71,95),(63,105,72,96)], [(1,35,10,26),(2,36,11,27),(3,19,12,28),(4,20,13,29),(5,21,14,30),(6,22,15,31),(7,23,16,32),(8,24,17,33),(9,25,18,34),(37,59,46,68),(38,60,47,69),(39,61,48,70),(40,62,49,71),(41,63,50,72),(42,64,51,55),(43,65,52,56),(44,66,53,57),(45,67,54,58),(73,123,82,114),(74,124,83,115),(75,125,84,116),(76,126,85,117),(77,109,86,118),(78,110,87,119),(79,111,88,120),(80,112,89,121),(81,113,90,122),(91,139,100,130),(92,140,101,131),(93,141,102,132),(94,142,103,133),(95,143,104,134),(96,144,105,135),(97,127,106,136),(98,128,107,137),(99,129,108,138)], [(2,14,8),(3,9,15),(5,17,11),(6,12,18),(19,75,113),(20,88,120),(21,83,109),(22,78,116),(23,73,123),(24,86,112),(25,81,119),(26,76,126),(27,89,115),(28,84,122),(29,79,111),(30,74,118),(31,87,125),(32,82,114),(33,77,121),(34,90,110),(35,85,117),(36,80,124),(37,95,56),(38,108,63),(39,103,70),(40,98,59),(41,93,66),(42,106,55),(43,101,62),(44,96,69),(45,91,58),(46,104,65),(47,99,72),(48,94,61),(49,107,68),(50,102,57),(51,97,64),(52,92,71),(53,105,60),(54,100,67),(128,140,134),(129,135,141),(131,143,137),(132,138,144)]])

62 conjugacy classes

class 1 2A2B2C3A3B3C3D4A4B6A···6F6G···6L9A9B9C9D9E9F12A12B12C12D18A···18F18G···18R36A···36L
order12223333446···66···69999991212121218···1818···1836···36
size1111111212661···112···12331212121266663···312···126···6

62 irreducible representations

dim11111111222333333336
type++-++
imageC1C2C3C3C3C6C6C6SL2(𝔽3)SL2(𝔽3)C3×SL2(𝔽3)A4C2×A43- 1+2C3×A4C2×3- 1+2C6×A4C9⋊A4C2×C9⋊A4C18.A4
kernelC2×C18.A4C18.A4C2×Q8⋊C9Q8×C18C6×SL2(𝔽3)Q8⋊C9Q8×C9C3×SL2(𝔽3)C18C18C6C2×C18C18C2×Q8C2×C6Q8C6C22C2C2
# reps114224222412112222664

Matrix representation of C2×C18.A4 in GL5(𝔽37)

360000
036000
003600
000360
000036
,
360000
036000
00312215
0021435
00172029
,
036000
10000
000136
001036
000036
,
1127000
2726000
003600
003601
003610
,
10000
2726000
001360
000361
000360

G:=sub<GL(5,GF(37))| [36,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,36],[36,0,0,0,0,0,36,0,0,0,0,0,31,2,17,0,0,22,14,20,0,0,15,35,29],[0,1,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,36,36,36],[11,27,0,0,0,27,26,0,0,0,0,0,36,36,36,0,0,0,0,1,0,0,0,1,0],[1,27,0,0,0,0,26,0,0,0,0,0,1,0,0,0,0,36,36,36,0,0,0,1,0] >;

C2×C18.A4 in GAP, Magma, Sage, TeX

C_2\times C_{18}.A_4
% in TeX

G:=Group("C2xC18.A4");
// GroupNames label

G:=SmallGroup(432,328);
// by ID

G=gap.SmallGroup(432,328);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,261,79,1901,172,3414,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^18=e^3=1,c^2=d^2=b^9,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^7,d*c*d^-1=b^9*c,e*c*e^-1=b^9*c*d,e*d*e^-1=c>;
// generators/relations

׿
×
𝔽