direct product, non-abelian, soluble
Aliases: C18×SL2(𝔽3), Q8⋊C9⋊6C6, C6.6(C6×A4), (Q8×C9)⋊7C6, C2.2(A4×C18), (C2×C18).8A4, (Q8×C18)⋊1C3, Q8⋊1(C3×C18), C18.15(C2×A4), C22.2(C9×A4), (C6×Q8).1C32, C3.1(C6×SL2(𝔽3)), C6.1(C3×SL2(𝔽3)), (C6×SL2(𝔽3)).2C3, (C3×SL2(𝔽3)).8C6, (C2×Q8⋊C9)⋊3C3, (C2×Q8)⋊1(C3×C9), (C2×C6).17(C3×A4), (C3×Q8).2(C3×C6), SmallGroup(432,327)
Series: Derived ►Chief ►Lower central ►Upper central
| Q8 — C18×SL2(𝔽3) |
Generators and relations for C18×SL2(𝔽3)
G = < a,b,c,d | a18=b4=d3=1, c2=b2, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=c, dcd-1=bc >
Subgroups: 211 in 82 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2×C4, Q8, Q8, C9, C9, C32, C12, C2×C6, C2×C6, C2×Q8, C18, C18, C18, C3×C6, SL2(𝔽3), C2×C12, C3×Q8, C3×Q8, C3×C9, C36, C2×C18, C2×C18, C62, C2×SL2(𝔽3), C6×Q8, C3×C18, Q8⋊C9, C2×C36, Q8×C9, Q8×C9, C3×SL2(𝔽3), C6×C18, C2×Q8⋊C9, Q8×C18, C6×SL2(𝔽3), C9×SL2(𝔽3), C18×SL2(𝔽3)
Quotients: C1, C2, C3, C6, C9, C32, A4, C18, C3×C6, SL2(𝔽3), C2×A4, C3×C9, C3×A4, C2×SL2(𝔽3), C3×C18, C3×SL2(𝔽3), C6×A4, C9×A4, C6×SL2(𝔽3), C9×SL2(𝔽3), A4×C18, C18×SL2(𝔽3)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 97 82 65)(2 98 83 66)(3 99 84 67)(4 100 85 68)(5 101 86 69)(6 102 87 70)(7 103 88 71)(8 104 89 72)(9 105 90 55)(10 106 73 56)(11 107 74 57)(12 108 75 58)(13 91 76 59)(14 92 77 60)(15 93 78 61)(16 94 79 62)(17 95 80 63)(18 96 81 64)(19 127 110 47)(20 128 111 48)(21 129 112 49)(22 130 113 50)(23 131 114 51)(24 132 115 52)(25 133 116 53)(26 134 117 54)(27 135 118 37)(28 136 119 38)(29 137 120 39)(30 138 121 40)(31 139 122 41)(32 140 123 42)(33 141 124 43)(34 142 125 44)(35 143 126 45)(36 144 109 46)
(1 48 82 128)(2 49 83 129)(3 50 84 130)(4 51 85 131)(5 52 86 132)(6 53 87 133)(7 54 88 134)(8 37 89 135)(9 38 90 136)(10 39 73 137)(11 40 74 138)(12 41 75 139)(13 42 76 140)(14 43 77 141)(15 44 78 142)(16 45 79 143)(17 46 80 144)(18 47 81 127)(19 96 110 64)(20 97 111 65)(21 98 112 66)(22 99 113 67)(23 100 114 68)(24 101 115 69)(25 102 116 70)(26 103 117 71)(27 104 118 72)(28 105 119 55)(29 106 120 56)(30 107 121 57)(31 108 122 58)(32 91 123 59)(33 92 124 60)(34 93 125 61)(35 94 126 62)(36 95 109 63)
(19 127 64)(20 128 65)(21 129 66)(22 130 67)(23 131 68)(24 132 69)(25 133 70)(26 134 71)(27 135 72)(28 136 55)(29 137 56)(30 138 57)(31 139 58)(32 140 59)(33 141 60)(34 142 61)(35 143 62)(36 144 63)(37 104 118)(38 105 119)(39 106 120)(40 107 121)(41 108 122)(42 91 123)(43 92 124)(44 93 125)(45 94 126)(46 95 109)(47 96 110)(48 97 111)(49 98 112)(50 99 113)(51 100 114)(52 101 115)(53 102 116)(54 103 117)
G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,97,82,65)(2,98,83,66)(3,99,84,67)(4,100,85,68)(5,101,86,69)(6,102,87,70)(7,103,88,71)(8,104,89,72)(9,105,90,55)(10,106,73,56)(11,107,74,57)(12,108,75,58)(13,91,76,59)(14,92,77,60)(15,93,78,61)(16,94,79,62)(17,95,80,63)(18,96,81,64)(19,127,110,47)(20,128,111,48)(21,129,112,49)(22,130,113,50)(23,131,114,51)(24,132,115,52)(25,133,116,53)(26,134,117,54)(27,135,118,37)(28,136,119,38)(29,137,120,39)(30,138,121,40)(31,139,122,41)(32,140,123,42)(33,141,124,43)(34,142,125,44)(35,143,126,45)(36,144,109,46), (1,48,82,128)(2,49,83,129)(3,50,84,130)(4,51,85,131)(5,52,86,132)(6,53,87,133)(7,54,88,134)(8,37,89,135)(9,38,90,136)(10,39,73,137)(11,40,74,138)(12,41,75,139)(13,42,76,140)(14,43,77,141)(15,44,78,142)(16,45,79,143)(17,46,80,144)(18,47,81,127)(19,96,110,64)(20,97,111,65)(21,98,112,66)(22,99,113,67)(23,100,114,68)(24,101,115,69)(25,102,116,70)(26,103,117,71)(27,104,118,72)(28,105,119,55)(29,106,120,56)(30,107,121,57)(31,108,122,58)(32,91,123,59)(33,92,124,60)(34,93,125,61)(35,94,126,62)(36,95,109,63), (19,127,64)(20,128,65)(21,129,66)(22,130,67)(23,131,68)(24,132,69)(25,133,70)(26,134,71)(27,135,72)(28,136,55)(29,137,56)(30,138,57)(31,139,58)(32,140,59)(33,141,60)(34,142,61)(35,143,62)(36,144,63)(37,104,118)(38,105,119)(39,106,120)(40,107,121)(41,108,122)(42,91,123)(43,92,124)(44,93,125)(45,94,126)(46,95,109)(47,96,110)(48,97,111)(49,98,112)(50,99,113)(51,100,114)(52,101,115)(53,102,116)(54,103,117)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,97,82,65)(2,98,83,66)(3,99,84,67)(4,100,85,68)(5,101,86,69)(6,102,87,70)(7,103,88,71)(8,104,89,72)(9,105,90,55)(10,106,73,56)(11,107,74,57)(12,108,75,58)(13,91,76,59)(14,92,77,60)(15,93,78,61)(16,94,79,62)(17,95,80,63)(18,96,81,64)(19,127,110,47)(20,128,111,48)(21,129,112,49)(22,130,113,50)(23,131,114,51)(24,132,115,52)(25,133,116,53)(26,134,117,54)(27,135,118,37)(28,136,119,38)(29,137,120,39)(30,138,121,40)(31,139,122,41)(32,140,123,42)(33,141,124,43)(34,142,125,44)(35,143,126,45)(36,144,109,46), (1,48,82,128)(2,49,83,129)(3,50,84,130)(4,51,85,131)(5,52,86,132)(6,53,87,133)(7,54,88,134)(8,37,89,135)(9,38,90,136)(10,39,73,137)(11,40,74,138)(12,41,75,139)(13,42,76,140)(14,43,77,141)(15,44,78,142)(16,45,79,143)(17,46,80,144)(18,47,81,127)(19,96,110,64)(20,97,111,65)(21,98,112,66)(22,99,113,67)(23,100,114,68)(24,101,115,69)(25,102,116,70)(26,103,117,71)(27,104,118,72)(28,105,119,55)(29,106,120,56)(30,107,121,57)(31,108,122,58)(32,91,123,59)(33,92,124,60)(34,93,125,61)(35,94,126,62)(36,95,109,63), (19,127,64)(20,128,65)(21,129,66)(22,130,67)(23,131,68)(24,132,69)(25,133,70)(26,134,71)(27,135,72)(28,136,55)(29,137,56)(30,138,57)(31,139,58)(32,140,59)(33,141,60)(34,142,61)(35,143,62)(36,144,63)(37,104,118)(38,105,119)(39,106,120)(40,107,121)(41,108,122)(42,91,123)(43,92,124)(44,93,125)(45,94,126)(46,95,109)(47,96,110)(48,97,111)(49,98,112)(50,99,113)(51,100,114)(52,101,115)(53,102,116)(54,103,117) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,97,82,65),(2,98,83,66),(3,99,84,67),(4,100,85,68),(5,101,86,69),(6,102,87,70),(7,103,88,71),(8,104,89,72),(9,105,90,55),(10,106,73,56),(11,107,74,57),(12,108,75,58),(13,91,76,59),(14,92,77,60),(15,93,78,61),(16,94,79,62),(17,95,80,63),(18,96,81,64),(19,127,110,47),(20,128,111,48),(21,129,112,49),(22,130,113,50),(23,131,114,51),(24,132,115,52),(25,133,116,53),(26,134,117,54),(27,135,118,37),(28,136,119,38),(29,137,120,39),(30,138,121,40),(31,139,122,41),(32,140,123,42),(33,141,124,43),(34,142,125,44),(35,143,126,45),(36,144,109,46)], [(1,48,82,128),(2,49,83,129),(3,50,84,130),(4,51,85,131),(5,52,86,132),(6,53,87,133),(7,54,88,134),(8,37,89,135),(9,38,90,136),(10,39,73,137),(11,40,74,138),(12,41,75,139),(13,42,76,140),(14,43,77,141),(15,44,78,142),(16,45,79,143),(17,46,80,144),(18,47,81,127),(19,96,110,64),(20,97,111,65),(21,98,112,66),(22,99,113,67),(23,100,114,68),(24,101,115,69),(25,102,116,70),(26,103,117,71),(27,104,118,72),(28,105,119,55),(29,106,120,56),(30,107,121,57),(31,108,122,58),(32,91,123,59),(33,92,124,60),(34,93,125,61),(35,94,126,62),(36,95,109,63)], [(19,127,64),(20,128,65),(21,129,66),(22,130,67),(23,131,68),(24,132,69),(25,133,70),(26,134,71),(27,135,72),(28,136,55),(29,137,56),(30,138,57),(31,139,58),(32,140,59),(33,141,60),(34,142,61),(35,143,62),(36,144,63),(37,104,118),(38,105,119),(39,106,120),(40,107,121),(41,108,122),(42,91,123),(43,92,124),(44,93,125),(45,94,126),(46,95,109),(47,96,110),(48,97,111),(49,98,112),(50,99,113),(51,100,114),(52,101,115),(53,102,116),(54,103,117)]])
126 conjugacy classes
| class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | ··· | 3H | 4A | 4B | 6A | ··· | 6F | 6G | ··· | 6X | 9A | ··· | 9F | 9G | ··· | 9R | 12A | 12B | 12C | 12D | 18A | ··· | 18R | 18S | ··· | 18BB | 36A | ··· | 36L |
| order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 18 | ··· | 18 | 36 | ··· | 36 |
| size | 1 | 1 | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 6 | 6 | 1 | ··· | 1 | 4 | ··· | 4 | 1 | ··· | 1 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | 1 | ··· | 1 | 4 | ··· | 4 | 6 | ··· | 6 |
126 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 |
| type | + | + | - | + | + | |||||||||||||||
| image | C1 | C2 | C3 | C3 | C3 | C6 | C6 | C6 | C9 | C18 | SL2(𝔽3) | SL2(𝔽3) | C3×SL2(𝔽3) | C9×SL2(𝔽3) | A4 | C2×A4 | C3×A4 | C6×A4 | C9×A4 | A4×C18 |
| kernel | C18×SL2(𝔽3) | C9×SL2(𝔽3) | C2×Q8⋊C9 | Q8×C18 | C6×SL2(𝔽3) | Q8⋊C9 | Q8×C9 | C3×SL2(𝔽3) | C2×SL2(𝔽3) | SL2(𝔽3) | C18 | C18 | C6 | C2 | C2×C18 | C18 | C2×C6 | C6 | C22 | C2 |
| # reps | 1 | 1 | 4 | 2 | 2 | 4 | 2 | 2 | 18 | 18 | 2 | 4 | 12 | 36 | 1 | 1 | 2 | 2 | 6 | 6 |
Matrix representation of C18×SL2(𝔽3) ►in GL3(𝔽37) generated by
| 36 | 0 | 0 |
| 0 | 3 | 0 |
| 0 | 0 | 3 |
| 1 | 0 | 0 |
| 0 | 0 | 36 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 0 | 26 | 27 |
| 0 | 27 | 11 |
| 26 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 11 | 10 |
G:=sub<GL(3,GF(37))| [36,0,0,0,3,0,0,0,3],[1,0,0,0,0,1,0,36,0],[1,0,0,0,26,27,0,27,11],[26,0,0,0,1,11,0,0,10] >;
C18×SL2(𝔽3) in GAP, Magma, Sage, TeX
C_{18}\times {\rm SL}_2({\mathbb F}_3) % in TeX
G:=Group("C18xSL(2,3)"); // GroupNames label
G:=SmallGroup(432,327);
// by ID
G=gap.SmallGroup(432,327);
# by ID
G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,79,1901,172,3414,285,124]);
// Polycyclic
G:=Group<a,b,c,d|a^18=b^4=d^3=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=c,d*c*d^-1=b*c>;
// generators/relations