Copied to
clipboard

G = C9×C4.A4order 432 = 24·33

Direct product of C9 and C4.A4

direct product, non-abelian, soluble

Aliases: C9×C4.A4, C36.4A4, SL2(𝔽3)⋊2C18, C4.(C9×A4), C6.7(C6×A4), Q8⋊C9.4C6, C2.3(A4×C18), C12.3(C3×A4), (Q8×C9).7C6, C18.16(C2×A4), Q8.C183C3, Q8.1(C3×C18), (C9×SL2(𝔽3))⋊5C2, (C3×SL2(𝔽3)).9C6, C4○D41(C3×C9), (C9×C4○D4)⋊1C3, C3.1(C3×C4.A4), (C3×C4.A4).2C3, (C3×Q8).4(C3×C6), (C3×C4○D4).1C32, SmallGroup(432,329)

Series: Derived Chief Lower central Upper central

C1C2Q8 — C9×C4.A4
C1C2Q8C3×Q8Q8×C9C9×SL2(𝔽3) — C9×C4.A4
Q8 — C9×C4.A4
C1C36

Generators and relations for C9×C4.A4
 G = < a,b,c,d,e | a9=b4=e3=1, c2=d2=b2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=b2c, ece-1=b2cd, ede-1=c >

Subgroups: 167 in 65 conjugacy classes, 29 normal (19 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C2×C4, D4, Q8, C9, C9, C32, C12, C12, C2×C6, C4○D4, C18, C18, C3×C6, SL2(𝔽3), C2×C12, C3×D4, C3×Q8, C3×C9, C36, C36, C2×C18, C3×C12, C4.A4, C3×C4○D4, C3×C18, Q8⋊C9, C2×C36, D4×C9, Q8×C9, C3×SL2(𝔽3), C3×C36, Q8.C18, C9×C4○D4, C3×C4.A4, C9×SL2(𝔽3), C9×C4.A4
Quotients: C1, C2, C3, C6, C9, C32, A4, C18, C3×C6, C2×A4, C3×C9, C3×A4, C4.A4, C3×C18, C6×A4, C9×A4, C3×C4.A4, A4×C18, C9×C4.A4

Smallest permutation representation of C9×C4.A4
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 22 77 138)(2 23 78 139)(3 24 79 140)(4 25 80 141)(5 26 81 142)(6 27 73 143)(7 19 74 144)(8 20 75 136)(9 21 76 137)(10 114 55 86)(11 115 56 87)(12 116 57 88)(13 117 58 89)(14 109 59 90)(15 110 60 82)(16 111 61 83)(17 112 62 84)(18 113 63 85)(28 132 50 105)(29 133 51 106)(30 134 52 107)(31 135 53 108)(32 127 54 100)(33 128 46 101)(34 129 47 102)(35 130 48 103)(36 131 49 104)(37 92 64 119)(38 93 65 120)(39 94 66 121)(40 95 67 122)(41 96 68 123)(42 97 69 124)(43 98 70 125)(44 99 71 126)(45 91 72 118)
(1 119 77 92)(2 120 78 93)(3 121 79 94)(4 122 80 95)(5 123 81 96)(6 124 73 97)(7 125 74 98)(8 126 75 99)(9 118 76 91)(10 50 55 28)(11 51 56 29)(12 52 57 30)(13 53 58 31)(14 54 59 32)(15 46 60 33)(16 47 61 34)(17 48 62 35)(18 49 63 36)(19 43 144 70)(20 44 136 71)(21 45 137 72)(22 37 138 64)(23 38 139 65)(24 39 140 66)(25 40 141 67)(26 41 142 68)(27 42 143 69)(82 128 110 101)(83 129 111 102)(84 130 112 103)(85 131 113 104)(86 132 114 105)(87 133 115 106)(88 134 116 107)(89 135 117 108)(90 127 109 100)
(1 132 77 105)(2 133 78 106)(3 134 79 107)(4 135 80 108)(5 127 81 100)(6 128 73 101)(7 129 74 102)(8 130 75 103)(9 131 76 104)(10 64 55 37)(11 65 56 38)(12 66 57 39)(13 67 58 40)(14 68 59 41)(15 69 60 42)(16 70 61 43)(17 71 62 44)(18 72 63 45)(19 47 144 34)(20 48 136 35)(21 49 137 36)(22 50 138 28)(23 51 139 29)(24 52 140 30)(25 53 141 31)(26 54 142 32)(27 46 143 33)(82 97 110 124)(83 98 111 125)(84 99 112 126)(85 91 113 118)(86 92 114 119)(87 93 115 120)(88 94 116 121)(89 95 117 122)(90 96 109 123)
(1 4 7)(2 5 8)(3 6 9)(10 67 34)(11 68 35)(12 69 36)(13 70 28)(14 71 29)(15 72 30)(16 64 31)(17 65 32)(18 66 33)(19 22 25)(20 23 26)(21 24 27)(37 53 61)(38 54 62)(39 46 63)(40 47 55)(41 48 56)(42 49 57)(43 50 58)(44 51 59)(45 52 60)(73 76 79)(74 77 80)(75 78 81)(82 91 107)(83 92 108)(84 93 100)(85 94 101)(86 95 102)(87 96 103)(88 97 104)(89 98 105)(90 99 106)(109 126 133)(110 118 134)(111 119 135)(112 120 127)(113 121 128)(114 122 129)(115 123 130)(116 124 131)(117 125 132)(136 139 142)(137 140 143)(138 141 144)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,22,77,138)(2,23,78,139)(3,24,79,140)(4,25,80,141)(5,26,81,142)(6,27,73,143)(7,19,74,144)(8,20,75,136)(9,21,76,137)(10,114,55,86)(11,115,56,87)(12,116,57,88)(13,117,58,89)(14,109,59,90)(15,110,60,82)(16,111,61,83)(17,112,62,84)(18,113,63,85)(28,132,50,105)(29,133,51,106)(30,134,52,107)(31,135,53,108)(32,127,54,100)(33,128,46,101)(34,129,47,102)(35,130,48,103)(36,131,49,104)(37,92,64,119)(38,93,65,120)(39,94,66,121)(40,95,67,122)(41,96,68,123)(42,97,69,124)(43,98,70,125)(44,99,71,126)(45,91,72,118), (1,119,77,92)(2,120,78,93)(3,121,79,94)(4,122,80,95)(5,123,81,96)(6,124,73,97)(7,125,74,98)(8,126,75,99)(9,118,76,91)(10,50,55,28)(11,51,56,29)(12,52,57,30)(13,53,58,31)(14,54,59,32)(15,46,60,33)(16,47,61,34)(17,48,62,35)(18,49,63,36)(19,43,144,70)(20,44,136,71)(21,45,137,72)(22,37,138,64)(23,38,139,65)(24,39,140,66)(25,40,141,67)(26,41,142,68)(27,42,143,69)(82,128,110,101)(83,129,111,102)(84,130,112,103)(85,131,113,104)(86,132,114,105)(87,133,115,106)(88,134,116,107)(89,135,117,108)(90,127,109,100), (1,132,77,105)(2,133,78,106)(3,134,79,107)(4,135,80,108)(5,127,81,100)(6,128,73,101)(7,129,74,102)(8,130,75,103)(9,131,76,104)(10,64,55,37)(11,65,56,38)(12,66,57,39)(13,67,58,40)(14,68,59,41)(15,69,60,42)(16,70,61,43)(17,71,62,44)(18,72,63,45)(19,47,144,34)(20,48,136,35)(21,49,137,36)(22,50,138,28)(23,51,139,29)(24,52,140,30)(25,53,141,31)(26,54,142,32)(27,46,143,33)(82,97,110,124)(83,98,111,125)(84,99,112,126)(85,91,113,118)(86,92,114,119)(87,93,115,120)(88,94,116,121)(89,95,117,122)(90,96,109,123), (1,4,7)(2,5,8)(3,6,9)(10,67,34)(11,68,35)(12,69,36)(13,70,28)(14,71,29)(15,72,30)(16,64,31)(17,65,32)(18,66,33)(19,22,25)(20,23,26)(21,24,27)(37,53,61)(38,54,62)(39,46,63)(40,47,55)(41,48,56)(42,49,57)(43,50,58)(44,51,59)(45,52,60)(73,76,79)(74,77,80)(75,78,81)(82,91,107)(83,92,108)(84,93,100)(85,94,101)(86,95,102)(87,96,103)(88,97,104)(89,98,105)(90,99,106)(109,126,133)(110,118,134)(111,119,135)(112,120,127)(113,121,128)(114,122,129)(115,123,130)(116,124,131)(117,125,132)(136,139,142)(137,140,143)(138,141,144)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,22,77,138)(2,23,78,139)(3,24,79,140)(4,25,80,141)(5,26,81,142)(6,27,73,143)(7,19,74,144)(8,20,75,136)(9,21,76,137)(10,114,55,86)(11,115,56,87)(12,116,57,88)(13,117,58,89)(14,109,59,90)(15,110,60,82)(16,111,61,83)(17,112,62,84)(18,113,63,85)(28,132,50,105)(29,133,51,106)(30,134,52,107)(31,135,53,108)(32,127,54,100)(33,128,46,101)(34,129,47,102)(35,130,48,103)(36,131,49,104)(37,92,64,119)(38,93,65,120)(39,94,66,121)(40,95,67,122)(41,96,68,123)(42,97,69,124)(43,98,70,125)(44,99,71,126)(45,91,72,118), (1,119,77,92)(2,120,78,93)(3,121,79,94)(4,122,80,95)(5,123,81,96)(6,124,73,97)(7,125,74,98)(8,126,75,99)(9,118,76,91)(10,50,55,28)(11,51,56,29)(12,52,57,30)(13,53,58,31)(14,54,59,32)(15,46,60,33)(16,47,61,34)(17,48,62,35)(18,49,63,36)(19,43,144,70)(20,44,136,71)(21,45,137,72)(22,37,138,64)(23,38,139,65)(24,39,140,66)(25,40,141,67)(26,41,142,68)(27,42,143,69)(82,128,110,101)(83,129,111,102)(84,130,112,103)(85,131,113,104)(86,132,114,105)(87,133,115,106)(88,134,116,107)(89,135,117,108)(90,127,109,100), (1,132,77,105)(2,133,78,106)(3,134,79,107)(4,135,80,108)(5,127,81,100)(6,128,73,101)(7,129,74,102)(8,130,75,103)(9,131,76,104)(10,64,55,37)(11,65,56,38)(12,66,57,39)(13,67,58,40)(14,68,59,41)(15,69,60,42)(16,70,61,43)(17,71,62,44)(18,72,63,45)(19,47,144,34)(20,48,136,35)(21,49,137,36)(22,50,138,28)(23,51,139,29)(24,52,140,30)(25,53,141,31)(26,54,142,32)(27,46,143,33)(82,97,110,124)(83,98,111,125)(84,99,112,126)(85,91,113,118)(86,92,114,119)(87,93,115,120)(88,94,116,121)(89,95,117,122)(90,96,109,123), (1,4,7)(2,5,8)(3,6,9)(10,67,34)(11,68,35)(12,69,36)(13,70,28)(14,71,29)(15,72,30)(16,64,31)(17,65,32)(18,66,33)(19,22,25)(20,23,26)(21,24,27)(37,53,61)(38,54,62)(39,46,63)(40,47,55)(41,48,56)(42,49,57)(43,50,58)(44,51,59)(45,52,60)(73,76,79)(74,77,80)(75,78,81)(82,91,107)(83,92,108)(84,93,100)(85,94,101)(86,95,102)(87,96,103)(88,97,104)(89,98,105)(90,99,106)(109,126,133)(110,118,134)(111,119,135)(112,120,127)(113,121,128)(114,122,129)(115,123,130)(116,124,131)(117,125,132)(136,139,142)(137,140,143)(138,141,144) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,22,77,138),(2,23,78,139),(3,24,79,140),(4,25,80,141),(5,26,81,142),(6,27,73,143),(7,19,74,144),(8,20,75,136),(9,21,76,137),(10,114,55,86),(11,115,56,87),(12,116,57,88),(13,117,58,89),(14,109,59,90),(15,110,60,82),(16,111,61,83),(17,112,62,84),(18,113,63,85),(28,132,50,105),(29,133,51,106),(30,134,52,107),(31,135,53,108),(32,127,54,100),(33,128,46,101),(34,129,47,102),(35,130,48,103),(36,131,49,104),(37,92,64,119),(38,93,65,120),(39,94,66,121),(40,95,67,122),(41,96,68,123),(42,97,69,124),(43,98,70,125),(44,99,71,126),(45,91,72,118)], [(1,119,77,92),(2,120,78,93),(3,121,79,94),(4,122,80,95),(5,123,81,96),(6,124,73,97),(7,125,74,98),(8,126,75,99),(9,118,76,91),(10,50,55,28),(11,51,56,29),(12,52,57,30),(13,53,58,31),(14,54,59,32),(15,46,60,33),(16,47,61,34),(17,48,62,35),(18,49,63,36),(19,43,144,70),(20,44,136,71),(21,45,137,72),(22,37,138,64),(23,38,139,65),(24,39,140,66),(25,40,141,67),(26,41,142,68),(27,42,143,69),(82,128,110,101),(83,129,111,102),(84,130,112,103),(85,131,113,104),(86,132,114,105),(87,133,115,106),(88,134,116,107),(89,135,117,108),(90,127,109,100)], [(1,132,77,105),(2,133,78,106),(3,134,79,107),(4,135,80,108),(5,127,81,100),(6,128,73,101),(7,129,74,102),(8,130,75,103),(9,131,76,104),(10,64,55,37),(11,65,56,38),(12,66,57,39),(13,67,58,40),(14,68,59,41),(15,69,60,42),(16,70,61,43),(17,71,62,44),(18,72,63,45),(19,47,144,34),(20,48,136,35),(21,49,137,36),(22,50,138,28),(23,51,139,29),(24,52,140,30),(25,53,141,31),(26,54,142,32),(27,46,143,33),(82,97,110,124),(83,98,111,125),(84,99,112,126),(85,91,113,118),(86,92,114,119),(87,93,115,120),(88,94,116,121),(89,95,117,122),(90,96,109,123)], [(1,4,7),(2,5,8),(3,6,9),(10,67,34),(11,68,35),(12,69,36),(13,70,28),(14,71,29),(15,72,30),(16,64,31),(17,65,32),(18,66,33),(19,22,25),(20,23,26),(21,24,27),(37,53,61),(38,54,62),(39,46,63),(40,47,55),(41,48,56),(42,49,57),(43,50,58),(44,51,59),(45,52,60),(73,76,79),(74,77,80),(75,78,81),(82,91,107),(83,92,108),(84,93,100),(85,94,101),(86,95,102),(87,96,103),(88,97,104),(89,98,105),(90,99,106),(109,126,133),(110,118,134),(111,119,135),(112,120,127),(113,121,128),(114,122,129),(115,123,130),(116,124,131),(117,125,132),(136,139,142),(137,140,143),(138,141,144)]])

126 conjugacy classes

class 1 2A2B3A3B3C···3H4A4B4C6A6B6C···6H6I6J9A···9F9G···9R12A12B12C12D12E···12P12Q12R18A···18F18G···18R18S···18X36A···36L36M···36AJ36AK···36AP
order122333···3444666···6669···99···91212121212···12121218···1818···1818···1836···3636···3636···36
size116114···4116114···4661···14···411114···4661···14···46···61···14···46···6

126 irreducible representations

dim1111111111222333333
type++++
imageC1C2C3C3C3C6C6C6C9C18C4.A4C3×C4.A4C9×C4.A4A4C2×A4C3×A4C6×A4C9×A4A4×C18
kernelC9×C4.A4C9×SL2(𝔽3)Q8.C18C9×C4○D4C3×C4.A4Q8⋊C9Q8×C9C3×SL2(𝔽3)C4.A4SL2(𝔽3)C9C3C1C36C18C12C6C4C2
# reps11422422181861236112266

Matrix representation of C9×C4.A4 in GL2(𝔽37) generated by

90
09
,
60
06
,
2610
1011
,
036
10
,
027
2636
G:=sub<GL(2,GF(37))| [9,0,0,9],[6,0,0,6],[26,10,10,11],[0,1,36,0],[0,26,27,36] >;

C9×C4.A4 in GAP, Magma, Sage, TeX

C_9\times C_4.A_4
% in TeX

G:=Group("C9xC4.A4");
// GroupNames label

G:=SmallGroup(432,329);
// by ID

G=gap.SmallGroup(432,329);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,1512,79,1901,172,3414,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^9=b^4=e^3=1,c^2=d^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=b^2*c,e*c*e^-1=b^2*c*d,e*d*e^-1=c>;
// generators/relations

׿
×
𝔽