Extensions 1→N→G→Q→1 with N=C3×Dic6 and Q=S3

Direct product G=N×Q with N=C3×Dic6 and Q=S3
dρLabelID
C3×S3×Dic6484C3xS3xDic6432,642

Semidirect products G=N:Q with N=C3×Dic6 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×Dic6)⋊1S3 = C3×Dic6⋊S3φ: S3/C3C2 ⊆ Out C3×Dic6484(C3xDic6):1S3432,420
(C3×Dic6)⋊2S3 = C3313SD16φ: S3/C3C2 ⊆ Out C3×Dic6144(C3xDic6):2S3432,440
(C3×Dic6)⋊3S3 = C3315SD16φ: S3/C3C2 ⊆ Out C3×Dic672(C3xDic6):3S3432,442
(C3×Dic6)⋊4S3 = C3×D12⋊S3φ: S3/C3C2 ⊆ Out C3×Dic6484(C3xDic6):4S3432,644
(C3×Dic6)⋊5S3 = C3×Dic3.D6φ: S3/C3C2 ⊆ Out C3×Dic6484(C3xDic6):5S3432,645
(C3×Dic6)⋊6S3 = C3⋊S3×Dic6φ: S3/C3C2 ⊆ Out C3×Dic6144(C3xDic6):6S3432,663
(C3×Dic6)⋊7S3 = C12.39S32φ: S3/C3C2 ⊆ Out C3×Dic672(C3xDic6):7S3432,664
(C3×Dic6)⋊8S3 = C12.40S32φ: S3/C3C2 ⊆ Out C3×Dic672(C3xDic6):8S3432,665
(C3×Dic6)⋊9S3 = C329(S3×Q8)φ: S3/C3C2 ⊆ Out C3×Dic672(C3xDic6):9S3432,666
(C3×Dic6)⋊10S3 = C3×C325SD16φ: S3/C3C2 ⊆ Out C3×Dic6484(C3xDic6):10S3432,422
(C3×Dic6)⋊11S3 = C3×D6.6D6φ: trivial image484(C3xDic6):11S3432,647

Non-split extensions G=N.Q with N=C3×Dic6 and Q=S3
extensionφ:Q→Out NdρLabelID
(C3×Dic6).1S3 = Dic6⋊D9φ: S3/C3C2 ⊆ Out C3×Dic61444(C3xDic6).1S3432,72
(C3×Dic6).2S3 = C18.D12φ: S3/C3C2 ⊆ Out C3×Dic6724+(C3xDic6).2S3432,73
(C3×Dic6).3S3 = C12.D18φ: S3/C3C2 ⊆ Out C3×Dic61444(C3xDic6).3S3432,74
(C3×Dic6).4S3 = C9⋊Dic12φ: S3/C3C2 ⊆ Out C3×Dic61444-(C3xDic6).4S3432,75
(C3×Dic6).5S3 = D9×Dic6φ: S3/C3C2 ⊆ Out C3×Dic61444-(C3xDic6).5S3432,280
(C3×Dic6).6S3 = D18.D6φ: S3/C3C2 ⊆ Out C3×Dic6724(C3xDic6).6S3432,281
(C3×Dic6).7S3 = Dic65D9φ: S3/C3C2 ⊆ Out C3×Dic6724+(C3xDic6).7S3432,282
(C3×Dic6).8S3 = Dic18⋊S3φ: S3/C3C2 ⊆ Out C3×Dic6724(C3xDic6).8S3432,283
(C3×Dic6).9S3 = C3×C322Q16φ: S3/C3C2 ⊆ Out C3×Dic6484(C3xDic6).9S3432,423
(C3×Dic6).10S3 = C336Q16φ: S3/C3C2 ⊆ Out C3×Dic6144(C3xDic6).10S3432,445
(C3×Dic6).11S3 = C337Q16φ: S3/C3C2 ⊆ Out C3×Dic6144(C3xDic6).11S3432,446
(C3×Dic6).12S3 = C3×C323Q16φ: S3/C3C2 ⊆ Out C3×Dic6484(C3xDic6).12S3432,424

׿
×
𝔽