Extensions 1→N→G→Q→1 with N=S3×C36 and Q=C2

Direct product G=N×Q with N=S3×C36 and Q=C2
dρLabelID
S3×C2×C36144S3xC2xC36432,345

Semidirect products G=N:Q with N=S3×C36 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C36)⋊1C2 = S3×D36φ: C2/C1C2 ⊆ Out S3×C36724+(S3xC36):1C2432,291
(S3×C36)⋊2C2 = D6.D18φ: C2/C1C2 ⊆ Out S3×C36724(S3xC36):2C2432,287
(S3×C36)⋊3C2 = D365S3φ: C2/C1C2 ⊆ Out S3×C361444-(S3xC36):3C2432,288
(S3×C36)⋊4C2 = Dic9.D6φ: C2/C1C2 ⊆ Out S3×C36724+(S3xC36):4C2432,289
(S3×C36)⋊5C2 = C4×S3×D9φ: C2/C1C2 ⊆ Out S3×C36724(S3xC36):5C2432,290
(S3×C36)⋊6C2 = C9×C4○D12φ: C2/C1C2 ⊆ Out S3×C36722(S3xC36):6C2432,347
(S3×C36)⋊7C2 = S3×D4×C9φ: C2/C1C2 ⊆ Out S3×C36724(S3xC36):7C2432,358
(S3×C36)⋊8C2 = C9×D42S3φ: C2/C1C2 ⊆ Out S3×C36724(S3xC36):8C2432,359
(S3×C36)⋊9C2 = C9×Q83S3φ: C2/C1C2 ⊆ Out S3×C361444(S3xC36):9C2432,367

Non-split extensions G=N.Q with N=S3×C36 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C36).1C2 = S3×Dic18φ: C2/C1C2 ⊆ Out S3×C361444-(S3xC36).1C2432,284
(S3×C36).2C2 = D6.Dic9φ: C2/C1C2 ⊆ Out S3×C361444(S3xC36).2C2432,67
(S3×C36).3C2 = S3×C9⋊C8φ: C2/C1C2 ⊆ Out S3×C361444(S3xC36).3C2432,66
(S3×C36).4C2 = C9×C8⋊S3φ: C2/C1C2 ⊆ Out S3×C361442(S3xC36).4C2432,110
(S3×C36).5C2 = S3×Q8×C9φ: C2/C1C2 ⊆ Out S3×C361444(S3xC36).5C2432,366
(S3×C36).6C2 = S3×C72φ: trivial image1442(S3xC36).6C2432,109

׿
×
𝔽