Extensions 1→N→G→Q→1 with N=C9×D12 and Q=C2

Direct product G=N×Q with N=C9×D12 and Q=C2
dρLabelID
C18×D12144C18xD12432,346

Semidirect products G=N:Q with N=C9×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×D12)⋊1C2 = D36⋊S3φ: C2/C1C2 ⊆ Out C9×D121444(C9xD12):1C2432,68
(C9×D12)⋊2C2 = C9⋊D24φ: C2/C1C2 ⊆ Out C9×D12724+(C9xD12):2C2432,69
(C9×D12)⋊3C2 = D125D9φ: C2/C1C2 ⊆ Out C9×D121444-(C9xD12):3C2432,285
(C9×D12)⋊4C2 = D12⋊D9φ: C2/C1C2 ⊆ Out C9×D12724(C9xD12):4C2432,286
(C9×D12)⋊5C2 = D9×D12φ: C2/C1C2 ⊆ Out C9×D12724+(C9xD12):5C2432,292
(C9×D12)⋊6C2 = C36⋊D6φ: C2/C1C2 ⊆ Out C9×D12724(C9xD12):6C2432,293
(C9×D12)⋊7C2 = C9×D24φ: C2/C1C2 ⊆ Out C9×D121442(C9xD12):7C2432,112
(C9×D12)⋊8C2 = C9×D4⋊S3φ: C2/C1C2 ⊆ Out C9×D12724(C9xD12):8C2432,150
(C9×D12)⋊9C2 = S3×D4×C9φ: C2/C1C2 ⊆ Out C9×D12724(C9xD12):9C2432,358
(C9×D12)⋊10C2 = C9×Q83S3φ: C2/C1C2 ⊆ Out C9×D121444(C9xD12):10C2432,367
(C9×D12)⋊11C2 = C9×C4○D12φ: trivial image722(C9xD12):11C2432,347

Non-split extensions G=N.Q with N=C9×D12 and Q=C2
extensionφ:Q→Out NdρLabelID
(C9×D12).1C2 = D12.D9φ: C2/C1C2 ⊆ Out C9×D121444(C9xD12).1C2432,70
(C9×D12).2C2 = C36.D6φ: C2/C1C2 ⊆ Out C9×D121444-(C9xD12).2C2432,71
(C9×D12).3C2 = C9×C24⋊C2φ: C2/C1C2 ⊆ Out C9×D121442(C9xD12).3C2432,111
(C9×D12).4C2 = C9×Q82S3φ: C2/C1C2 ⊆ Out C9×D121444(C9xD12).4C2432,158

׿
×
𝔽